Advertisement
The Journal of Heart and Lung Transplantation
International Society for Heart and Lung Transplantation.

Detection and management of HLA sensitization in candidates for adult heart transplantation

Published:December 26, 2022DOI:https://doi.org/10.1016/j.healun.2022.12.019
      Heart transplantation (HT) remains the preferred therapy for patients with advanced heart failure. However, for sensitized HT candidates who have antibodies to human leukocyte antigens , finding a suitable donor can be challenging and can lead to adverse waitlist outcomes. In recent years, the number of sensitized patients awaiting HT has increased likely due to the use of durable and mechanical circulatory support as well as increasing number of candidates with underlying congenital heart disease. This State-of-the-Art review discusses the assessment of human leukocyte antigens antibodies, potential desensitization strategies including mechanisms of action and specific protocols, the approach to a potential donor including the use of complement-dependent cytotoxicity, flow cytometry, and virtual crossmatches, and peritransplant induction management.

      KEYWORDS

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Heart and Lung Transplantation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khush KK
        • Cherikh WS
        • Chambers DC
        • et al.
        The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report - 2019; focus theme: donor and recipient size match.
        J Heart Lung Transplant. 2019; 38: 1056-1066https://doi.org/10.1016/j.healun.2019.08.004
        • Colvin M
        • Smith JM
        • Ahn Y
        • et al.
        OPTN/SRTR 2020 Annual Data Report: heart.
        Am J Transplant. 2022; 22 (In eng): 350-437https://doi.org/10.1111/ajt.16977
        • Kransdorf EP
        • Kittleson MM
        • Patel JK
        • Pando MJ
        • Steidley DE
        • Kobashigawa JA.
        Calculated panel-reactive antibody predicts outcomes on the heart transplant waiting list.
        J Heart Lung Transplant. 2017; 36: 787-796https://doi.org/10.1016/j.healun.2017.02.015
        • Colvin MM
        • Cook JL
        • Chang PP
        • et al.
        Sensitization in heart transplantation: emerging knowledge: a scientific statement from the American Heart Association.
        Circulation. 2019; 139 (In eng): e553-e578https://doi.org/10.1161/cir.0000000000000598
        • Triulzi DJ
        • Kleinman S
        • Kakaiya RM
        • et al.
        The effect of previous pregnancy and transfusion on HLA alloimmunization in blood donors: implications for a transfusion-related acute lung injury risk reduction strategy.
        Transfusion. 2009; 49: 1825-1835https://doi.org/10.1111/j.1537-2995.2009.02206.x
        • Honger G
        • Fornaro I
        • Granado C
        • Tiercy JM
        • Hosli I
        • Schaub S.
        Frequency and determinants of pregnancy-induced child-specific sensitization.
        Am J Transplant. 2013; 13: 746-753https://doi.org/10.1111/ajt.12048
        • Densmore TL
        • Goodnough LT
        • Ali S
        • Dynis M
        • Chaplin H.
        Prevalence of HLA sensitization in female apheresis donors.
        Transfusion. 1999; 39: 103-106https://doi.org/10.1046/j.1537-2995.1999.39199116901.x
        • De Clippel D
        • Baeten M
        • Torfs A
        • et al.
        Screening for HLA antibodies in plateletpheresis donors with a history of transfusion or pregnancy.
        Transfusion. 2014; 54: 3036-3042https://doi.org/10.1111/trf.12727
        • Meier-Kriesche HU
        • Scornik JC
        • Susskind B
        • Rehman S
        • Schold JD.
        A lifetime versus a graft life approach redefines the importance of HLA matching in kidney transplant patients.
        Transplantation. 2009; 88: 23-29https://doi.org/10.1097/TP.0b013e3181a9ec89
        • Picascia A
        • Grimaldi V
        • Sabia C
        • Napoli C.
        Comprehensive assessment of sensitizing events and anti-HLA antibody development in women awaiting kidney transplantation.
        Transpl Immunol. 2016; 36: 14-19https://doi.org/10.1016/j.trim.2016.03.002
        • Yabu JM
        • Anderson MW
        • Kim D
        • et al.
        Sensitization from transfusion in patients awaiting primary kidney transplant.
        Nephrol Dial Transplant. 2013; 28: 2908-2918https://doi.org/10.1093/ndt/gft362
        • Leffell MS
        • Kim D
        • Vega RM
        • et al.
        Red blood cell transfusions and the risk of allosensitization in patients awaiting primary kidney transplantation.
        Transplantation. 2014; 97: 525-533https://doi.org/10.1097/01.tp.0000437435.19980.8f
        • Shaddy RE
        • Hunter DD
        • Osborn KA
        • et al.
        Prospective analysis of HLA immunogenicity of cryopreserved valved allografts used in pediatric heart surgery.
        Circulation. 1996; 94 (In eng): 1063-1067https://doi.org/10.1161/01.cir.94.5.1063
        • Welters MJ
        • Oei FB
        • Witvliet MD
        • et al.
        A broad and strong humoral immune response to donor HLA after implantation of cryopreserved human heart valve allografts.
        Human Immunol. 2002; 63: 1019-1025
        • Chiu P
        • Schaffer JM
        • Oyer PE
        • et al.
        Influence of durable mechanical circulatory support and allosensitization on mortality after heart transplantation.
        J Heart Lung Transplant. 2016; 35 (In eng): 731-742https://doi.org/10.1016/j.healun.2015.12.023
        • Ivey-Miranda JB
        • Kunnirickal S
        • Bow L
        • et al.
        Differential impact of class i and class ii panel reactive antibodies on post-heart transplant outcomes.
        J Cardiac Failure. 2021; 27: 40-47https://doi.org/10.1016/j.cardfail.2020.07.012
        • Urban M
        • Gazdic T
        • Slimackova E
        • et al.
        Alloimmunosensitization in left ventricular assist device recipients and impact on posttransplantation outcome.
        ASAIO Journal. 2012; 58: 554-561
        • Drakos SG
        • Stringham JC
        • Long JW
        • et al.
        Prevalence and risks of allosensitization in HeartMate left ventricular assist device recipients: the impact of leukofiltered cellular blood product transfusions.
        J thorac Cardiovasc Surg. 2007; 133 (In eng): 1612-1619https://doi.org/10.1016/j.jtcvs.2006.11.062
        • McKenna Jr., DH
        • Eastlund T
        • Segall M
        • Noreen HJ
        • Park S
        HLA alloimmunization in patients requiring ventricular assist device support.
        J Heart Lung Transplant. 2002; 21 (In eng): 1218-1224https://doi.org/10.1016/s1053-2498(02)00448-5
        • Moazami N
        • Itescu S
        • Williams MR
        • Argenziano M
        • Weinberg A
        • Oz MC.
        Platelet transfusions are associated with the development of anti-major histocompatibility complex class I antibodies in patients with left ventricular assist support.
        J Heart Lung Transplant. 1998; 17 (In eng): 876-880
        • Massad MG
        • Cook DJ
        • Schmitt SK
        • et al.
        Factors influencing HLA sensitization in implantable LVAD recipients.
        Annals of thorac Surg. 1997; 64 (In eng): 1120-1125https://doi.org/10.1016/s0003-4975(97)00807-2
        • Itescu S
        • Ankersmit JH
        • Kocher AA
        • Schuster MD.
        Immunobiology of left ventricular assist devices.
        Prog Cardiovasc Dis. 2000; 43 (In eng): 67-80https://doi.org/10.1053/pcad.2000.7191
        • George I
        • Colley P
        • Russo MJ
        • et al.
        Association of device surface and biomaterials with immunologic sensitization after mechanical support.
        J thorac Cardiovasc Surg. 2008; 135 (In eng): 1372-1379https://doi.org/10.1016/j.jtcvs.2007.11.049
        • Chau VQ
        • Feinman J
        • Fullin K
        • et al.
        De novo human leukocyte antigen allosensitization patterns in patients bridged to heart transplantation using left ventricular assist devices.
        Transpl Immunol. 2022; 72 (In eng)101567https://doi.org/10.1016/j.trim.2022.101567
        • Kwon MH
        • Zhang JQ
        • Schaenman JM
        • et al.
        Characterization of ventricular assist device-mediated sensitization in the bridge-to-heart-transplantation patient.
        J thorac cardiovasc Surg. 2015; 149 (In eng): 1161-1166https://doi.org/10.1016/j.jtcvs.2015.01.003
        • Ko BS
        • Drakos S
        • Kfoury AG
        • et al.
        Immunologic effects of continuous-flow left ventricular assist devices before and after heart transplant.
        J Heart Lung Transplant. 2016; 35 (In eng): 1024-1030https://doi.org/10.1016/j.healun.2016.05.001
        • Askar M
        • Hsich E
        • Reville P
        • et al.
        HLA and MICA allosensitization patterns among patients supported by ventricular assist devices.
        J Heart Lung Transplant. 2013; 32: 1241-1248
        • Alba AC
        • Tinckam K
        • Foroutan F
        • et al.
        Factors associated with anti-human leukocyte antigen antibodies in patients supported with continuous-flow devices and effect on probability of transplant and post-transplant outcomes.
        J Heart Lung Transplant. 2015; 34 (In eng): 685-692https://doi.org/10.1016/j.healun.2014.11.024
        • Arnaoutakis GJ
        • George TJ
        • Kilic A
        • et al.
        Effect of sensitization in US heart transplant recipients bridged with a ventricular assist device: update in a modern cohort.
        J Thorac Cardiovasc Surg. 2011; 142 (e1): 1236-1245
        • Jain R
        • Habal MV
        • Clerkin KJ
        • et al.
        De novo human leukocyte antigen allosensitization in heartmate 3 versus heartmate ii left ventricular assist device recipients.
        Asaio j. 2022; 68 (In eng): 226-232https://doi.org/10.1097/mat.0000000000001451
        • Cole R
        • Moriguchi J
        • Kittleson M
        • et al.
        Do temporary mechanical circulatory support devices activate sensitization pathways in patients awaiting heart transplantation?.
        J Heart Lung Transplant. 2022; 41: S469https://doi.org/10.1016/j.healun.2022.01.1184
        • Brow D
        • Krishnarao K
        • Goswami R
        • Elrefaei M.
        Effect of temporary versus durable support devices as bridge to transplant on hla antibody production in heart transplant recipients.
        J Heart Lung Transplant. 2022; 41: S203https://doi.org/10.1016/j.healun.2022.01.1647
        • Castro K ZJ
        • Doss R
        • McKean S
        • Russelia J
        • Alam A
        • Askar M
        • Hall S.
        Prospective analysis of the impact of impella 5.5 devices on HLA antibody development in transplant recipients.
        Am J Transplant. 2022; 22 ([abstract]): 834-835
        • Cabrera-Rubio I
        • Canteli Álvarez Á
        • Castrillo Bustamante C
        • et al.
        Sensitization during short-term mechanical circulatory support. Determinants, therapeutic management, and outcomes after heart transplant.
        Rev Esp Cardiol (Engl Ed). 2022; 75 (In eng spa): 251-260https://doi.org/10.1016/j.rec.2021.01.017
        • Adams AB
        • Pearson TC
        • Larsen CP.
        Heterologous immunity: an overlooked barrier to tolerance.
        Immunol Rev. 2003; 196 (In eng): 147-160https://doi.org/10.1046/j.1600-065x.2003.00082.x
        • Adams AB
        • Williams MA
        • Jones TR
        • et al.
        Heterologous immunity provides a potent barrier to transplantation tolerance.
        J Clin Investig. 2003; 111 (In eng): 1887-1895https://doi.org/10.1172/jci17477
        • Taylor DK
        • Neujahr D
        • Turka LA.
        Heterologous immunity and homeostatic proliferation as barriers to tolerance.
        Curr Opin Immunol. 2004; 16 (In eng): 558-564https://doi.org/10.1016/j.coi.2004.07.007
        • Locke JE
        • Zachary AA
        • Warren DS
        • et al.
        Proinflammatory events are associated with significant increases in breadth and strength of HLA-specific antibody.
        Am J Transplant. 2009; 9: 2136-2139https://doi.org/10.1111/j.1600-6143.2009.02764.x
        • van den Heuvel H
        • Heutinck KM
        • van der Meer-Prins EMW
        • et al.
        Allo-HLA cross-reactivities of cytomegalovirus-, influenza-, and varicella zoster virus-specific memory T cells are shared by different healthy individuals.
        Am J Transplant. 2017; 17: 2033-2044https://doi.org/10.1111/ajt.14279
        • Hung SY
        • Lin TM
        • Chang MY
        • et al.
        Risk factors of sensitization to human leukocyte antigen in end-stage renal disease patients.
        Hum Immunol. 2014; 75: 531-535https://doi.org/10.1016/j.humimm.2014.02.024
        • Cordero E
        • Bulnes-Ramos A
        • Aguilar-Guisado M
        • et al.
        Effect of influenza vaccination inducing antibody mediated rejection in solid organ transplant recipients.
        Front Immunol. 2020; 11 (In eng): 1917https://doi.org/10.3389/fimmu.2020.01917
        • Danziger-Isakov L
        • Cherkassky L
        • Siegel H
        • et al.
        Effects of influenza immunization on humoral and cellular alloreactivity in humans.
        Transplantation. 2010; 89 (In eng): 838-844https://doi.org/10.1097/TP.0b013e3181ca56f8
        • Kumar D
        • Kimball P
        • Gupta G.
        COVID-19 vaccine does not alter panel reactive antibody or flow cytometric cross match in kidney transplant candidates.
        Transplant immunology. 2021; 69 (In eng): 101469-101470https://doi.org/10.1016/j.trim.2021.101469
        • Xu Q
        • Sood P
        • Helmick D
        • Lomago JS
        • Tevar AD
        • Zeevi A.
        Positive flow cytometry crossmatch with discrepant antibody testing results following COVID-19 vaccination.
        Am J Transplant. 2021; 21 (In eng): 3785-3789https://doi.org/10.1111/ajt.16753
        • Tambur AR
        • Lavee J.
        Incorporating human leukocyte antibody results into clinical practice.
        J Heart Lung Transplant. 2016; 35 (In eng): 851-856https://doi.org/10.1016/j.healun.2016.05.010
        • Tait BD.
        Detection of HLA antibodies in organ transplant recipients - triumphs and challenges of the solid phase bead assay.
        Front Immunol. 2016; 7 (In eng): 570https://doi.org/10.3389/fimmu.2016.00570
        • Kobashigawa J
        • Colvin M
        • Potena L
        • et al.
        The management of antibodies in heart transplantation: An ISHLT consensus document.
        J Heart Lung Transplant. 2018; 37 (In eng): 537-547https://doi.org/10.1016/j.healun.2018.01.1291
        • Sullivan HC
        • Gebel HM
        • Bray RA.
        Understanding solid-phase HLA antibody assays and the value of MFI.
        Hum Immunol. 2017; 78 (In eng): 471-480https://doi.org/10.1016/j.humimm.2017.05.007
        • Loupy A
        • Lefaucheur C
        • Vernerey D
        • et al.
        Complement-binding anti-HLA antibodies and kidney-allograft survival.
        N Engl J Medicine. 2013; 369: 1215-1226https://doi.org/10.1056/NEJMoa1302506
        • Zeevi A
        • Lunz J
        • Feingold B
        • et al.
        Persistent strong anti-HLA antibody at high titer is complement binding and associated with increased risk of antibody-mediated rejection in heart transplant recipients.
        J Heart Lung Transplant. 2013; 32: 98-105https://doi.org/10.1016/j.healun.2012.09.021
        • Sutherland SM
        • Chen G
        • Sequeira FA
        • Lou CD
        • Alexander SR
        • Tyan DB.
        Complement-fixing donor-specific antibodies identified by a novel C1q assay are associated with allograft loss.
        Pediatric transplantation. 2012; 16: 12-17https://doi.org/10.1111/j.1399-3046.2011.01599.x)
        • Wiebe C
        • Gareau AJ
        • Pochinco D
        • et al.
        Evaluation of C1q status and Titer of de novo donor-specific antibodies as predictors of allograft survival.
        Am J Transplant. 2017; 17 (In eng): 703-711https://doi.org/10.1111/ajt.14015
        • Tambur AR
        • Herrera ND
        • Haarberg KM
        • et al.
        Assessing antibody strength: comparison of MFI, C1q, and titer information.
        Am J Transplant. 2015; 15 (In eng): 2421-2430https://doi.org/10.1111/ajt.13295
        • Yell M
        • Muth BL
        • Kaufman DB
        • Djamali A
        • Ellis TM.
        C1q binding activity of de novo donor-specific HLA antibodies in renal transplant recipients with and without antibody-mediated rejection.
        Transplantation. 2015; 99 (In eng): 1151-1155https://doi.org/10.1097/tp.0000000000000699
        • Zachary AA
        • Lucas DP
        • Detrick B
        • Leffell MS.
        Naturally occurring interference in Luminex assays for HLA-specific antibodies: characteristics and resolution.
        Hum Immunol. 2009; 70 (In eng): 496-501https://doi.org/10.1016/j.humimm.2009.04.001
        • Diebolder CA
        • Beurskens FJ
        • de Jong RN
        • et al.
        Complement is activated by IgG hexamers assembled at the cell surface.
        Science. 2014; 343 (In eng): 1260-1263https://doi.org/10.1126/science.1248943
        • Tambur AR
        • Campbell P
        • Chong AS
        • et al.
        Sensitization in transplantation: assessment of risk (STAR) 2019 working group meeting report.
        Am J Transplant. 2020; 20: 2652-2668https://doi.org/10.1111/ajt.15937
        • Tambur AR
        • Diagnostics Wiebe C.HLA
        Evaluating DSA strength by titration.
        Transplantation. 2018; 102 (In eng): S23-s30https://doi.org/10.1097/tp.0000000000001817
        • Guidicelli G
        • Anies G
        • Bachelet T
        • et al.
        The complement interference phenomenon as a cause for sharp fluctuations of serum anti-HLA antibody strength in kidney transplant patients.
        Transpl Immunol. 2013; 29 (In eng): 17-21https://doi.org/10.1016/j.trim.2013.09.005
        • Comoli P
        • Cioni M
        • Tagliamacco A
        • et al.
        Acquisition of C3d-binding activity by de novo donor-specific HLA antibodies correlates with graft loss in nonsensitized pediatric kidney recipients.
        Am J Transplant. 2016; 16 (In eng): 2106-2116https://doi.org/10.1111/ajt.13700
        • Tambur AR
        • Campbell P
        • Claas FH
        • et al.
        Sensitization in transplantation: assessment of risk (STAR) 2017 working group meeting report.
        Am J Transplant. 2018; 18: 1604-1614https://doi.org/10.1111/ajt.14752
        • Reinsmoen NL
        • Patel J
        • Mirocha J
        • et al.
        Optimizing transplantation of sensitized heart candidates using 4 antibody detection assays to prioritize the assignment of unacceptable antigens.
        Journal Heart Lung Transplant. 2016; 35: 165-172
        • Kransdorf EP
        • Pando MJ
        • Gragert L
        • Kaplan B.
        HLA population genetics in solid organ transplantation.
        Transplantation. 2017; 101 (In eng): 1971-1976https://doi.org/10.1097/tp.0000000000001830
        • Cecka JM.
        Calculated PRA (CPRA): the new measure of sensitization for transplant candidates.
        Am J Transplant. 2010; 10: 26-29https://doi.org/10.1111/j.1600-6143.2009.02927.x)
      1. OPTN Histocompatibility Committee. Change Calculated Panel Reactive Antibody (CPRA) calculation. Available at:https://optn.transplant.hrsa.gov/media/3dol14ka/change-calculated-panel-reactive-antibody-cpra-calculation_winter-2022-pc.pdf. Accessed January 6, 2023.

        • Kransdorf EP
        • Pando MJ
        • Stewart D
        • et al.
        Stem cell donor HLA typing improves CPRA in kidney allocation.
        Am J Transplant. 2021; 21 (Accessed January 6, 2023): 138-147https://doi.org/10.1111/ajt.16156
      2. Eurotransplant Reference Laboratory. Virtual PRA Calculator. Available at: https://www.etrl.org/vPRA.aspx. Accessed January 6, 2023.

      3. Canadian cPRA Calculator. Available at: https://ctr2.transplantregistry.ca/otd-cpra-client/ctr2.jsp. Accessed January 6, 2023.

        • Kobashigawa J
        • Mehra M
        • West L
        • et al.
        Report from a consensus conference on the sensitized patient awaiting heart transplantation.
        J Heart Lung Transplant. 2009; 28: 213-225
        • Vo AA
        • Lukovsky M
        • Toyoda M
        • et al.
        Rituximab and intravenous immune globulin for desensitization during renal transplantation.
        N Engl J Med. 2008; 359: 242-251
        • Patel J
        • Everly M
        • Chang D
        • Kittleson M
        • Reed E
        • Kobashigawa J.
        Reduction of alloantibodies via proteosome inhibition in cardiac transplantation.
        J Heart Lung Transplant. 2011; 30: 1320-1326
        • Jordan SC
        • Quartel AW
        • Czer LS
        • et al.
        Posttransplant therapy using high-dose human immunoglobulin (intravenous gammaglobulin) to control acute humoral rejection in renal and cardiac allograft recipients and potential mechanism of action.
        Transplantation. 1998; 66 (In eng): 800-805https://doi.org/10.1097/00007890-199809270-00017
        • Ballow M.
        The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders.
        J Allergy Clin Immunol. 2011; 127 (quiz 324-5. (In eng)): 315-323https://doi.org/10.1016/j.jaci.2010.10.030
        • John R
        • Lietz K
        • Burke E
        • et al.
        Intravenous immunoglobulin reduces anti-HLA alloreactivity and shortens waiting time to cardiac transplantation in highly sensitized left ventricular assist device recipients.
        Circulation. 1999; 100 (In eng): Ii229-Ii235https://doi.org/10.1161/01.cir.100.suppl_2.ii-229
        • Dowling RD
        • Jones JW
        • Carroll MS
        • Gray Jr, LA
        Use of intravenous immunoglobulin in sensitized LVAD recipients.
        Transplant Proc. 1998; 30 (In eng): 1110-1111https://doi.org/10.1016/s0041-1345(98)00172-9
        • Edwards JJ
        • Seliktar N
        • White R
        • et al.
        Impact and predictors of positive response to desensitization in pediatric heart transplant candidates.
        J Heart Lung Transplant. 2019; 38 (In eng): 1206-1213https://doi.org/10.1016/j.healun.2019.08.018
        • Pisani BA
        • Mullen GM
        • Malinowska K
        • et al.
        Plasmapheresis with intravenous immunoglobulin G is effective in patients with elevated panel reactive antibody prior to cardiac transplantation.
        J Heart Lung Transplant. 1999; 18 (In eng): 701-706https://doi.org/10.1016/s1053-2498(99)00022-4
        • Ravindranath MH
        • Terasaki PI
        • Pham T
        • Jucaud V
        • Kawakita S.
        Therapeutic preparations of IVIg contain naturally occurring anti–HLA-E antibodies that react with HLA-Ia (HLA-A/-B/-Cw) alleles.
        Blood. 2013; 121: 2013-2028https://doi.org/10.1182/blood-2012-08-447771
        • Takamatsu H
        • Yamada S
        • Tsuji N
        • et al.
        Detection of Antibodies Against Human Leukocyte Antigen Class II in the Sera of Patients Receiving Intravenous Immunoglobulin.
        Transplantation Direct. 2021; 7: e697https://doi.org/10.1097/TXD.0000000000001146
        • Roman PE
        • DeVore AD
        • Welsby IJ.
        Techniques and applications of perioperative therapeutic plasma exchange.
        Curr Opin Anaesthesiol. 2014; 27 (In eng): 57-64https://doi.org/10.1097/aco.0000000000000037
        • Thès J
        • Finet M
        • Couteau-Chardon A
        • et al.
        Impact on outcome of preoperative plasmapheresis in sensitized lung transplant recipients.
        J Heart Lung Transplant. 2020; 39: S313https://doi.org/10.1016/j.healun.2020.01.703
        • Leech SH
        • Lopez-Cepero M
        • LeFor WM
        • et al.
        Management of the sensitized cardiac recipient: the use of plasmapheresis and intravenous immunoglobulin.
        Clin transplant. 2006; 20 (In eng): 476-484https://doi.org/10.1111/j.1399-0012.2006.00509.x
        • Gazdic T
        • Malek I
        • Pagacova L
        • et al.
        Safety and efficacy of immunoadsorption in heart transplantation program.
        Transplant Proc. 2016; 48 (In eng): 2792-2796https://doi.org/10.1016/j.transproceed.2016.06.061
        • Maillard N
        • Absi L
        • Claisse G
        • Masson I
        • Alamartine E
        • Mariat C.
        Protein A-based immunoadsorption is more efficient than conventional plasma exchange to remove circulating anti-HLA antibodies.
        Blood Purification. 2015; 40: 167-172
        • Smith MR.
        Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance.
        Oncogene. 2003; 22 (In eng): 7359-7368https://doi.org/10.1038/sj.onc.1206939
        • Kobashigawa JA
        • Patel JK
        • Kittleson MM
        • et al.
        The long-term outcome of treated sensitized patients who undergo heart transplantation.
        Clin Transplant. 2011; 25 (In eng): E61-E67https://doi.org/10.1111/j.1399-0012.2010.01334.x
        • Habal MV.
        Current Desensitization Strategies in Heart Transplantation.
        Front Immunol. 2021; 12 (In eng)702186https://doi.org/10.3389/fimmu.2021.702186
        • McGee Jr, EC
        • Cotts W
        • Tambur AR
        • et al.
        Successful bridge to transplant in a highly sensitized patient with a complicated pump pocket infection.
        J Heart Lung Transplant. 2008; 27: 568-571
        • Balfour IC
        • Fiore A
        • Graff RJ
        • Knutsen AP.
        Use of rituximab to decrease panel-reactive antibodies.
        J Heart Lung Transplantat. 2005; 24: 628-630
        • Starling RC
        • Armstrong B
        • Bridges ND
        • et al.
        Accelerated allograft vasculopathy with rituximab after cardiac transplantation.
        J Am College Cardiol. 2019; 74 (In eng): 36-51https://doi.org/10.1016/j.jacc.2019.04.056
      4. Choi J, Vo A, Huang E, et al. Experience with obinutuzumab (Type II anti-CD20) in kidney transplant patients with donor specific antibody (DSA plus) antibody mediated rejection. AM J TRANSPLANTATION: WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA; 2017:310-310.

        • Bearden CM
        • Agarwal A
        • Book BK
        • et al.
        Pronase treatment facilitates alloantibody flow cytometric and cytotoxic crossmatching in the presence of rituximab.
        Hum Immunol. 2004; 65 (In eng): 803-809https://doi.org/10.1016/j.humimm.2004.06.001
        • Reindl-Schwaighofer R
        • Oberbauer R.
        False-positive CDC x-match after Rituximab.
        Transpl Int. 2014; 27: e124-e125https://doi.org/10.1111/tri.12385
        • Milongo D
        • Vieu G
        • Blavy S
        • et al.
        Interference of therapeutic antibodies used in desensitization protocols on lymphocytotoxicity crossmatch results.
        Transpl Immunol. 2015; 32 (In eng): 151-155https://doi.org/10.1016/j.trim.2015.04.004
        • NasrAllah MM
        • Elalfy M
        • El Ansary M
        • et al.
        Obinutuzumab in kidney transplantation: effect on B-cell counts and crossmatch tests.
        Transplantation. 2022; 106 (In eng): 369-372https://doi.org/10.1097/tp.0000000000003686
        • Zhang X
        • Li F
        • Jordan SC.
        Obinutuzumab in kidney transplantation: effect on B-cell counts and crossmatch tests.
        Transplantation. 2021; 105 (In eng): e272-e273https://doi.org/10.1097/tp.0000000000003849
        • Philogene MC
        • Sikorski P
        • Montgomery RA
        • Leffell MS
        • Zachary AA.
        Differential effect of bortezomib on HLA class I and class II antibody.
        Transplantation. 2014; 98: 660-665
        • Woodle ES
        • Shields AR
        • Ejaz NS
        • et al.
        Prospective iterative trial of proteasome inhibitor-based desensitization.
        Am J Transplant. 2015; 15 (In eng): 101-118https://doi.org/10.1111/ajt.13050
        • Jeong JC
        • Jambaldorj E
        • Kwon HY
        • et al.
        Desensitization using bortezomib and high-dose immunoglobulin increases rate of deceased donor kidney transplantation.
        Medicine. 2016; 95
        • Diwan TS
        • Raghavaiah S
        • Burns JM
        • Kremers WK
        • Gloor JM
        • Stegall MD.
        The impact of proteasome inhibition on alloantibody-producing plasma cells in vivo.
        Transplantation. 2011; 91 (In eng): 536-541https://doi.org/10.1097/TP.0b013e3182081333
        • Moreno Gonzales MA
        • Gandhi MJ
        • Schinstock CA
        • et al.
        32 Doses of bortezomib for desensitization is not well tolerated and is associated with only modest reductions in anti-HLA antibody.
        Transplantation. 2017; 101 (In eng): 1222-1227https://doi.org/10.1097/tp.0000000000001330
        • Sriwattanakomen R
        • Xu Q
        • Demehin M
        • et al.
        Impact of carfilzomib-based desensitization on heart transplantation of sensitized candidates.
        J Heart Lung Transplant. 2021; 40 (In eng): 595-603https://doi.org/10.1016/j.healun.2021.03.001
        • Jordan SC
        • Choi J
        • Kim I
        • et al.
        Interleukin-6, a cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: therapeutic implications of IL-6 receptor blockade.
        Transplantation. 2017; 101 (In eng): 32-44https://doi.org/10.1097/tp.0000000000001452
        • Deng MC
        • Plenz G
        • Labarrere C
        • et al.
        The role of IL6 cytokines in acute cardiac allograft rejection.
        Transpl Immunol. 2002; 9 (In eng): 115-120https://doi.org/10.1016/s0966-3274(02)00004-7
        • Miller CL
        • Madsen JC.
        IL-6 directed therapy in transplantation.
        Curr Transplant Rep. 2021; 8 (In eng): 191-204https://doi.org/10.1007/s40472-021-00331-4
        • Vo AA
        • Choi J
        • Kim I
        • et al.
        A Phase I/II trial of the interleukin-6 receptor-specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients.
        Transplantation. 2015; 99 (In eng): 2356-2363https://doi.org/10.1097/tp.0000000000000741
        • Daligault M
        • Bardy B
        • Noble J
        • et al.
        Marginal Impact of tocilizumab monotherapy on anti-HLA alloantibodies in highly sensitized kidney transplant candidates.
        Transplant Direct. 2021; 7 (In eng): e690https://doi.org/10.1097/txd.0000000000001139
        • Jouve T
        • Laheurte C
        • Noble J
        • et al.
        Immune responses following tocilizumab therapy to desensitize HLA-sensitized kidney transplant candidates.
        Am J Transplant. 2022; 22 (In eng): 71-84https://doi.org/10.1111/ajt.16709
        • Kwun J
        • Matignon M
        • Manook M
        • et al.
        Daratumumab in sensitized kidney transplantation: potentials and limitations of experimental and clinical use.
        J Am Soc Nephrol. 2019; 30 (In eng): 1206-1219https://doi.org/10.1681/asn.2018121254
        • Stehlik J
        • Islam N
        • Hurst D
        • et al.
        Utility of virtual crossmatch in sensitized patients awaiting heart transplantation.
        J Heart Lung Transplant. 2009; 28: 1129-1134
        • Kobashigawa JA
        • Patel J
        • Kittleson M
        • et al.
        When a Prospective Crossmatch Is Warranted in the Virtual Crossmatch (VXM) Era.
        J Heart Lung Transplant. 2016; 35: S210-S211https://doi.org/10.1016/j.healun.2016.01.593
        • Patel R
        • Terasaki PI.
        Significance of the positive crossmatch test in kidney transplantation.
        New England J Med. 1969; 280 (In eng): 735-739https://doi.org/10.1056/nejm196904032801401
        • Bishay ES
        • Cook DJ
        • Starling RC
        • et al.
        The clinical significance of flow cytometry crossmatching in heart transplantation.
        Eur J Cardiothorac Surg. 2000; 17 (In eng): 362-369https://doi.org/10.1016/s1010-7940(00)00363-8
        • Lick SD
        • Beckles DL
        • Piovesana G
        • et al.
        Transplantation of high panel-reactive antibody left ventricular assist device patients without crossmatch using on-bypass pheresis and alemtuzumab.
        Ann thorac Surg. 2011; 92 (In eng): 1428-1434https://doi.org/10.1016/j.athoracsur.2011.04.064
        • Brennan DC
        • Flavin K
        • Lowell JA
        • et al.
        A randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant Recipients1, 2.
        Transplantation. 1999; 67: 1011-1018
        • Gaber AO
        • First MR
        • Tesi RJ
        • et al.
        Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation.
        Transplantation. 1998; 66: 29-37
        • Scheinberg P
        • Fischer SH
        • Li L
        • et al.
        Distinct EBV and CMV reactivation patterns following antibody-based immunosuppressive regimens in patients with severe aplastic anemia.
        Blood. 2007; 109: 3219-3224
        • Smart FW
        • Naftel DC
        • Costanzo MR
        • et al.
        Risk factors for early, cumulative, and fatal infections after heart transplantation: a multiinstitutional study.
        J Heart Lung Transplant. 1996; 15: 329-341
        • Miller LW
        • Naftel DC
        • Bourge RC
        • et al.
        Infection after heart transplantation: a multiinstitutional study. Cardiac Transplant Research Database Group.
        J Heart Lung Transplant. 1994; 13: 381-392
        • Hershberger RE
        • Starling RC
        • Eisen HJ
        • et al.
        Daclizumab to prevent rejection after cardiac transplantation.
        The New England journal of medicine. 2005; 352 (In eng): 2705-2713https://doi.org/10.1056/NEJMoa032953
        • Chou NK
        • Wang SS
        • Chen YS
        • et al.
        Induction immunosuppression with basiliximab in heart transplantation.
        Transplant Proc. 2008; 40 (In eng): 2623-2625https://doi.org/10.1016/j.transproceed.2008.07.113
        • Kittipibul V
        • Tantrachoti P
        • Ongcharit P
        • et al.
        Low-dose basiliximab induction therapy in heart transplantation.
        Clinical Transplantat. 2017; 31: e13132https://doi.org/10.1111/ctr.13132
        • Mehra MR
        • Zucker MJ
        • Wagoner L
        • et al.
        A multicenter, prospective, randomized, double-blind trial of basiliximab in heart transplantation.
        J Heart Lung Transplant. 2005; 24: 1297-1304https://doi.org/10.1016/j.healun.2004.09.010
        • Ansari D
        • Lund LH
        • Stehlik J
        • et al.
        Induction with anti-thymocyte globulin in heart transplantation is associated with better long-term survival compared with basiliximab.
        J Heart Lung Transplant. 2015; 34 (In eng): 1283-1291https://doi.org/10.1016/j.healun.2015.04.001
        • López-Abente J
        • Martínez-Bonet M
        • Bernaldo-de-Quirós E
        • et al.
        Basiliximab impairs regulatory T cell (TREG) function and could affect the short-term graft acceptance in children with heart transplantation.
        Scientific Rep. 2021; 11: 827https://doi.org/10.1038/s41598-020-80567-9
        • Mattei MF
        • Redonnet M
        • Gandjbakhch I
        • et al.
        Lower risk of infectious deaths in cardiac transplant patients receiving basiliximab versus anti-thymocyte globulin as induction therapy.
        J Heart Lung Transplant. 2007; 26 (In eng): 693-699https://doi.org/10.1016/j.healun.2007.05.002
        • Carrier M
        • Leblanc M-H
        • Perrault LP
        • et al.
        Basiliximab and rabbit anti-thymocyte globulin for prophylaxis of acute rejection after heart transplantation: a non-inferiority trial.
        J Heart Lung Transplant. 2007; 26: 258-263https://doi.org/10.1016/j.healun.2007.01.006
        • Flaman F
        • Zieroth S
        • Rao V
        • Ross H
        • Delgado DH.
        Basiliximab versus rabbit anti-thymocyte globulin for induction therapy in patients after heart transplantation.
        J Heart Lung Transplant. 2006; 25 (In eng): 1358-1362https://doi.org/10.1016/j.healun.2006.09.002
        • Rafiei M
        • Kittleson M
        • Patel J
        • et al.
        Anti-thymocyte gamma-globulin may prevent antibody production after heart transplantation.
        Transplant Proc. 2014; 46 (In eng): 3570-3574https://doi.org/10.1016/j.transproceed.2014.08.042
        • Holt DB
        • Lublin DM
        • Phelan DL
        • et al.
        Mortality and morbidity in pre-sensitized pediatric heart transplant recipients with a positive donor crossmatch utilizing peri-operative plasmapheresis and cytolytic therapy.
        J Heart Lung Transplant. 2007; 26 (In eng): 876-882https://doi.org/10.1016/j.healun.2007.07.011
        • Gökler J
        • Aliabadi-Zuckermann A
        • Zuckermann A
        • et al.
        Extracorporeal photopheresis with low-dose immunosuppression in high-risk heart transplant patients-a pilot study. Transplant international: official journal of the european society for.
        Organ Transplantation. 2022; 35 (In eng): 10320-10321https://doi.org/10.3389/ti.2022.10320
        • Barr ML
        • Meiser BM
        • Eisen HJ
        • et al.
        Photopheresis for the prevention of rejection in cardiac transplantation.
        Photopheresis Transplantation Study Group. The New England journal of medicine. 1998; 339: 1744-1751
        • Stegall MD
        • Diwan T
        • Raghavaiah S
        • et al.
        Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients.
        Am J Transplant. 2011; 11: 2405-2413https://doi.org/10.1111/j.1600-6143.2011.03757.x
        • Patel JK
        • Coutance G
        • Loupy A
        • et al.
        Complement inhibition for prevention of antibody-mediated rejection in immunologically high-risk heart allograft recipients.
        Am J Transplant. 2020; (In eng)https://doi.org/10.1111/ajt.16420
        • Deng MC
        • Eisen HJ
        • Mehra MR
        • et al.
        Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling.
        Am J Transplant. 2006; 6: 150-160
        • Pham MX
        • Teuteberg JJ
        • Kfoury AG
        • et al.
        Gene-expression profiling for rejection surveillance after cardiac transplantation.
        N Engl J Med. 2010; 362: 1890-1900
        • Kobashigawa J
        • Patel J
        • Azarbal B
        • et al.
        Randomized pilot trial of gene expression profiling versus heart biopsy in the first year after heart transplant: early invasive monitoring attenuation through gene expression trial.
        Circulation Heart failure. 2015; 8: 557-564https://doi.org/10.1161/CIRCHEARTFAILURE.114.001658
        • Khush KK
        • Patel J
        • Pinney S
        • et al.
        Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: A prospective multicenter study.
        Am j transplantation: off j Am Soc Transplantation and the Am Soc Transplant Surg. 2019; 19 (In eng): 2889-2899https://doi.org/10.1111/ajt.15339
        • Khush KK.
        Clinical utility of donor-derived cell-free DNA testing in cardiac transplantation.
        J Heart Lung Transplant. 2021; 40 (In eng): 397-404https://doi.org/10.1016/j.healun.2021.01.1564
        • Clarke B
        • Ducharme A
        • Giannetti N
        • et al.
        Multicenter evaluation of a national organ sharing policy for highly sensitized patients listed for heart transplantation in Canada.
        J Heart Lung Transplant. 2017; 36 (In eng): 491-498https://doi.org/10.1016/j.healun.2017.01.003
        • Alishetti S
        • Farr M
        • Jennings D
        • et al.
        Desensitizing highly sensitized heart transplant candidates with the combination of belatacept and proteasome inhibition.
        Am J Transplant. 2020; 20 (In eng): 3620-3630https://doi.org/10.1111/ajt.16113
        • Eerhart MJ
        • Reyes JA
        • Blanton CL
        • et al.
        Complement Blockade in recipients prevents delayed graft function and delays antibody-mediated rejection in a nonhuman primate model of kidney transplantation.
        Transplantation. 2022; 106 (In eng): 60-71https://doi.org/10.1097/tp.0000000000003754
        • Vo AA
        • Zeevi A
        • Choi J
        • et al.
        A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients.
        Transplantation. 2015; 99 (In eng): 299-308https://doi.org/10.1097/tp.0000000000000592
        • Lonze BE
        • Tatapudi VS
        • Weldon EP
        • et al.
        IdeS (Imlifidase): a novel agent that cleaves human IgG and permits successful kidney transplantation across high-strength donor-specific antibody.
        Ann Surg. 2018; 268 (In eng): 488-496https://doi.org/10.1097/sla.0000000000002924
        • Jordan SC
        • Lorant T
        • Choi J
        • et al.
        IgG endopeptidase in highly sensitized patients undergoing transplantation.
        N EnglJ Med. 2017; 377 (In eng): 442-453https://doi.org/10.1056/NEJMoa1612567