Advertisement
The Journal of Heart and Lung Transplantation
International Society for Heart and Lung Transplantation.

Vascular pathobiology of pulmonary hypertension

  • Eunate Gallardo-Vara
    Affiliations
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut

    Department of Genetics, Yale University, New Haven, Connecticut
    Search for articles by this author
  • Aglaia Ntokou
    Affiliations
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut

    Department of Genetics, Yale University, New Haven, Connecticut
    Search for articles by this author
  • Jui M. Dave
    Affiliations
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut

    Department of Genetics, Yale University, New Haven, Connecticut
    Search for articles by this author
  • Daniel G. Jovin
    Affiliations
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut

    Department of Genetics, Yale University, New Haven, Connecticut
    Search for articles by this author
  • Fatima Z. Saddouk
    Affiliations
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut

    Department of Genetics, Yale University, New Haven, Connecticut
    Search for articles by this author
  • Daniel M. Greif
    Correspondence
    Reprint requests: Daniel M Greif, Department of Internal Medicine, Yale University, Yale Cardiovascular Research Center, New Haven, CT 06511, United States, Telephone: 203-737-6389. Fax: 203-737-6118.
    Affiliations
    Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut

    Department of Genetics, Yale University, New Haven, Connecticut
    Search for articles by this author
Published:December 20, 2022DOI:https://doi.org/10.1016/j.healun.2022.12.012
      Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.

      KEYWORDS

      Abbreviations:

      BMP (bone morphogenetic protein), BMPR2 (bone morphogenetic protein receptor 2), CAV (caveolin), CD31 (cluster of differentiation 31), COX (cyclo-oxygenase), CXCL (C-X-C motif chemokine ligand), CXCR (C-X-C chemokine receptor), EC (endothelial cell), Eln (elastin), EndMT (endothelial-to-mesenchymal transition), ERK (extracellular signal-regulated kinases), ET (endothelin), Fox (Forkhead box protein), HES (hairy and enhancer of Split), HIF (hypoxia-inducible factor), IPAH (idiopathic pulmonary arterial hypertension), KLF (Kruppel-like factor), NO (nitric oxide), NOS (nitric oxide synthase), eNOS (endothelial nitric oxide synthase), PAEC (pulmonary artery endothelial cell), PAH (pulmonary arterial hypertension), PASMC (pulmonary artery smooth muscle cell), PDGFR (platelet-derived growth factor receptor), PDGF (platelet-derived growth factor), PH (pulmonary hypertension), RhoA (Ras homolog family member A), RVH (right ventricle hypertrophy), SMA (α-smooth muscle alpha), SMC (smooth muscle cell), SM22α (smooth muscle 22α), SNAI (snail-family transcription factor), TAZ (transcriptional co-activator with PDZ-binding motif), TGF (transforming growth factor), TNF (tumor necrosis factor), VEGF (vascular endothelial growth factor), VEGFR (vascular endothelial growth factor receptors), VHL (von-Hippel Lindau), YAP (Yes-associated protein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Heart and Lung Transplantation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Simonneau G
        • Montani D
        • Celermajer DS
        • et al.
        Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
        Eur Respir J. 2019; 531801913
        • Kurakula K
        • Smolders V
        • Tura-Ceide O
        • Jukema JW
        • Quax PHA
        • Goumans MJ
        Endothelial dysfunction in pulmonary hypertension: cause or consequence?.
        Biomedicines. 2021; 9: 57
        • Budhiraja R
        • Tuder RM
        • Hassoun PM
        Endothelial dysfunction in pulmonary hypertension.
        Circulation. 2004; 109: 159-165
        • Sakao S
        • Taraseviciene-Stewart L
        • Lee JD
        • Wood K
        • Cool CD
        Voelkel NF: Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells.
        FASEB J. 2005; 19: 1178-1180
        • Masri FA
        • Xu W
        • Comhair SA
        • et al.
        Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2007; 293: L548-L554
        • Semenza GL
        Hypoxia-inducible factors in physiology and medicine.
        Cell. 2012; 148: 399-408
        • Skuli N
        • Simon MC
        HIF-1alpha versus HIF-2alpha in endothelial cells and vascular functions: is there a master in angiogenesis regulation?.
        Cell Cycle. 2009; 8: 3252-3253
        • Tuder RM
        • Chacon M
        • Alger L
        • et al.
        Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis.
        J Pathol. 2001; 195: 367-374
        • Tang H
        • Babicheva A
        • McDermott KM
        • et al.
        Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition.
        Am J Physiol Lung Cell Mol Physiol. 2018; 314: L256-LL75
        • Fijalkowska I
        • Xu W
        • Comhair SA
        • et al.
        Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells.
        Am J Pathol. 2010; 176: 1130-1138
        • Iyer NV
        • Kotch LE
        • Agani F
        • et al.
        Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha.
        Genes Dev. 1998; 12: 149-162
        • Ryan HE
        • Lo J
        • Johnson RS
        HIF-1 alpha is required for solid tumor formation and embryonic vascularization.
        EMBO J. 1998; 17: 3005-3015
        • Peng J
        • Zhang L
        • Drysdale L
        • Fong GH
        The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling.
        Proc Natl Acad Sci U S A. 2000; 97: 8386-8391
        • Tian H
        • Hammer RE
        • Matsumoto AM
        • Russell DW
        • McKnight SL
        The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development.
        Genes Dev. 1998; 12: 3320-3324
        • Compernolle V
        • Brusselmans K
        • Acker T
        • et al.
        Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice.
        Nat Med. 2002; 8: 702-710
        • Scortegagna M
        • Ding K
        • Oktay Y
        • et al.
        Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice.
        Nat Genet. 2003; 35: 331-340
        • Maltepe E
        • Schmidt JV
        • Baunoch D
        • Bradfield CA
        • Simon MC
        Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT.
        Nature. 1997; 386: 403-407
        • Brusselmans K
        • Compernolle V
        • Tjwa M
        • et al.
        Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia.
        J Clin Invest. 2003; 111: 1519-1527
        • Yu AY
        • Shimoda LA
        • Iyer NV
        • et al.
        Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha.
        J Clin Invest. 1999; 103: 691-696
        • Tang H
        • Babicheva A
        • McDermott KM
        • et al.
        Endothelial HIF-2alpha contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition.
        Am J Physiol Lung Cell Mol Physiol. 2018; 314: L256-LL75
        • Sheikh AQ
        • Saddouk FZ
        • Ntokou A
        • Mazurek R
        • Greif DM
        Cell Autonomous and Non-cell Autonomous Regulation of SMC Progenitors in Pulmonary Hypertension.
        Cell Rep. 2018; 23: 1152-1165
        • Voelkel NF
        • Vandivier RW
        • Tuder RM
        Vascular endothelial growth factor in the lung.
        Am J Physiol Lung Cell Mol Physiol. 2006; 290: L209-L221
        • Shweiki D
        • Itin A
        • Soffer D
        • Keshet E
        Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.
        Nature. 1992; 359: 843-845
        • Greenberg JM
        • Thompson FY
        • Brooks SK
        • et al.
        Mesenchymal expression of vascular endothelial growth factors D and A defines vascular patterning in developing lung.
        Dev Dyn. 2002; 224: 144-153
        • Papaioannou AI
        • Zakynthinos E
        • Kostikas K
        • et al.
        Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis.
        BMC Pulm Med. 2009; 9: 18
        • Hirose S
        • Hosoda Y
        • Furuya S
        • Otsuki T
        • Ikeda E
        Expression of vascular endothelial growth factor and its receptors correlates closely with formation of the plexiform lesion in human pulmonary hypertension.
        Pathol Int. 2000; 50: 472-479
        • Taraseviciene-Stewart L
        • Kasahara Y
        • Alger L
        • et al.
        Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension.
        FASEB J. 2001; 15: 427-438
        • Partovian C
        • Adnot S
        • Raffestin B
        • et al.
        Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats.
        Am J Respir Cell Mol Biol. 2000; 23: 762-771
        • Winter MP
        • Sharma S
        • Altmann J
        • et al.
        Interruption of vascular endothelial growth factor receptor 2 signaling induces a proliferative pulmonary vasculopathy and pulmonary hypertension.
        Basic Res Cardiol. 2020; 115: 58
        • Swietlik EM
        • Greene D
        • Zhu N
        • et al.
        Bayesian inference associates Rare KDR variants with specific phenotypes in pulmonary arterial hypertension.
        Circ Genom Precis Med. 2020; 14e003155
        • Voelkel NF
        • Gomez-Arroyo J
        The role of vascular endothelial growth factor in pulmonary arterial hypertension. the angiogenesis paradox.
        Am J Respir Cell Mol Biol. 2014; 51: 474-484
        • Kaneko FT
        • Arroliga AC
        • Dweik RA
        • et al.
        Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension.
        Am J Respir Crit Care Med. 1998; 158: 917-923
        • Klinger JR
        • Kadowitz PJ
        The nitric oxide pathway in pulmonary vascular disease.
        Am J Cardiol. 2017; 120 (S71-S9)
        • Zuckerbraun BS
        • Stoyanovsky DA
        • Sengupta R
        • et al.
        Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA.
        Am J Physiol Cell Physiol. 2007; 292: C824-C831
        • Kibbe MR
        • Li J
        • Nie S
        • et al.
        Inducible nitric oxide synthase (iNOS) expression upregulates p21 and inhibits vascular smooth muscle cell proliferation through p42/44 mitogen-activated protein kinase activation and independent of p53 and cyclic guanosine monophosphate.
        J Vasc Surg. 2000; 31: 1214-1228
        • Fagan KA
        • Fouty BW
        • Tyler RC
        • et al.
        The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia.
        J Clin Invest. 1999; 103: 291-299
        • Champion HC
        • Bivalacqua TJ
        • Greenberg SS
        • Giles TD
        • Hyman AL
        Kadowitz PJ: adenoviral gene transfer of endothelial nitric-oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS-deficient mice.
        Proc Natl Acad Sci U S A. 2002; 99: 13248-13253
        • Mathew R
        Critical role of caveolin-1 loss/dysfunction in pulmonary hypertension.
        Med Sci (Basel). 2021; 9: 58
        • Zhao YY
        • Zhao YD
        • Mirza MK
        • et al.
        Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration.
        J Clin Invest. 2009; 119: 2009-2018
        • Mathew R
        • Huang J
        • Shah M
        • Patel K
        • Gewitz M
        • Sehgal PB
        Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension.
        Circulation. 2004; 110: 1499-1506
        • Achcar RO
        • Demura Y
        • Rai PR
        • et al.
        Loss of caveolin and heme oxygenase expression in severe pulmonary hypertension.
        Chest. 2006; 129: 696-705
        • Austin ED
        • Ma L
        • LeDuc C
        • et al.
        Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension.
        Circ Cardiovasc Genet. 2012; 5: 336-343
        • Lang IM
        • Gaine SP
        Recent advances in targeting the prostacyclin pathway in pulmonary arterial hypertension.
        Eur Respir Rev. 2015; 24: 630-641
        • Cathcart MC
        • Tamosiuniene R
        • Chen G
        • et al.
        Cyclooxygenase-2-linked attenuation of hypoxia-induced pulmonary hypertension and intravascular thrombosis.
        J Pharmacol Exp Ther. 2008; 326: 51-58
        • Fredenburgh LE
        • Liang OD
        • Macias AA
        • et al.
        Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells.
        Circulation. 2008; 117: 2114-2122
        • Rubin LJ
        Endothelin receptor antagonists for the treatment of pulmonary artery hypertension.
        Life Sci. 2012; 91: 517-521
        • Davie N
        • Haleen SJ
        • Upton PD
        • et al.
        ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells.
        Am J Respir Crit Care Med. 2002; 165: 398-405
        • Villar A.B.
        • Valverde D.
        • Lago M.
        Functional study of polymorphisms in the promoter region of the endothelin-1 gene in Pullmonary Artery Hypertension.
        Eur Respir J. 2019; 54: PA5043
        • Giaid A
        • Yanagisawa M
        • Langleben D
        • et al.
        Expression of endothelin-1 in the lungs of patients with pulmonary hypertension.
        N Engl J Med. 1993; 328: 1732-1739
        • Shao D
        • Park JE
        • Wort SJ
        The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension.
        Pharmacol Res. 2011; 63: 504-511
        • Chen SJ
        • Chen YF
        • Meng QC
        • Durand J
        • Dicarlo VS
        • Oparil S
        Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats.
        J Appl Physiol. 1985; 79 (1995): 2122-2131
        • Chen SJ
        • Chen YF
        • Opgenorth TJ
        • et al.
        The orally active nonpeptide endothelin A-receptor antagonist A-127722 prevents and reverses hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling in Sprague-Dawley rats.
        J Cardiovasc Pharmacol. 1997; 29: 713-725
        • Benza RL
        • Gomberg-Maitland M
        • Demarco T
        • et al.
        Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension.
        Am J Respir Crit Care Med. 2015; 192: 1345-1354
        • Morrell NW
        • Aldred MA
        • Chung WK
        • et al.
        Genetics and genomics of pulmonary arterial hypertension.
        Eur Respir J. 2019; 531801899
        • Theilmann AL
        • Hawke LG
        • Hilton LR
        • et al.
        Endothelial BMPR2 loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling.
        Arterioscler Thromb Vasc Biol. 2020; 40: 2605-2618
        • Hong KH
        • Lee YJ
        • Lee E
        • et al.
        Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension.
        Circulation. 2008; 118: 722-730
        • Trembath RC
        • Thomson JR
        • Machado RD
        • et al.
        Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia.
        N Engl J Med. 2001; 345: 325-334
        • Alvandi Z
        • Bischoff J
        Endothelial-Mesenchymal Transition in Cardiovascular Disease.
        Arterioscler Thromb Vasc Biol. 2021; 41: 2357-2369
        • Ranchoux B
        • Antigny F
        • Rucker-Martin C
        • et al.
        Endothelial-to-mesenchymal transition in pulmonary hypertension.
        Circulation. 2015; 131: 1006-1018
        • Qiao L
        • Nishimura T
        • Shi L
        • et al.
        Endothelial fate mapping in mice with pulmonary hypertension.
        Circulation. 2014; 129: 692-703
        • Meyrick B
        • Reid L
        Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression.
        Am J Pathol. 1980; 100: 151-178
        • Sheikh AQ
        • Lighthouse JK
        • Greif DM
        Recapitulation of developing artery muscularization in pulmonary hypertension.
        Cell Rep. 2014; 6: 809-817
        • Sheikh AQ
        • Misra A
        • Rosas IO
        • Adams RH
        • Greif DM
        Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension.
        Sci Transl Med. 2015; 7 (308ra159)
        • Perros F
        • Montani D
        • Dorfmuller P
        • et al.
        Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension.
        Am J Respir Crit Care Med. 2008; 178: 81-88
        • Selimovic N
        • Bergh CH
        • Andersson B
        • Sakiniene E
        • Carlsten H
        • Rundqvist B
        Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension.
        Eur Respir J. 2009; 34: 662-668
        • Balasubramaniam V
        • Le Cras TD
        • Ivy DD
        • Grover TR
        • Kinsella JP
        • Abman SH
        Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus.
        Am J Physiol Lung Cell Mol Physiol. 2003; 284: L826-L833
        • Ntokou A
        • Dave JM
        • Kauffman AC
        • et al.
        Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension.
        JCI Insight. 2021; 6: e139067
        • Zhu N
        • Swietlik EM
        • Welch CL
        • et al.
        Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH.
        Genome Med. 2021; 13: 80
        • Ten Freyhaus H
        • Berghausen EM
        • Janssen W
        • et al.
        Genetic Ablation of PDGF-Dependent Signaling Pathways Abolishes Vascular Remodeling and Experimental Pulmonary Hypertension.
        Arterioscler Thromb Vasc Biol. 2015; 35: 1236-1245
        • Li X
        • Zhang X
        • Leathers R
        • et al.
        Notch3 signaling promotes the development of pulmonary arterial hypertension.
        Nat Med. 2009; 15: 1289-1297
        • Dave JM
        • Chakraborty R
        • Ntokou A
        • et al.
        JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency.
        J Clin Invest. 2022; 132: e142338
        • Chida A
        • Shintani M
        • Matsushita Y
        • et al.
        Mutations of NOTCH3 in childhood pulmonary arterial hypertension.
        Mol Genet Genomic Med. 2014; 2: 229-239
        • Arias-Stella J
        • Saldana M
        The Terminal Portion of the Pulmonary Arterial Tree in People Native to High Altitudes.
        Circulation. 1963; 28: 915-925
        • Arias-Stella J
        • Kruger H
        • Recavarren S
        Pathology of chronic mountain sickness.
        Thorax. 1973; 28: 701-708
        • Hislop A
        • Reid L
        New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension.
        Br J Exp Pathol. 1976; 57: 542-554
        • Stenmark KR
        • Meyrick B
        • Galie N
        • Mooi WJ
        • McMurtry IF
        Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure.
        Am J Physiol Lung Cell Mol Physiol. 2009; 297: L1013-L1032
        • Ball MK
        • Waypa GB
        • Mungai PT
        • et al.
        Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1alpha.
        Am J Respir Crit Care Med. 2014; 189: 314-324
        • Shan F
        • Huang Z
        • Xiong R
        • Huang QY
        • Li J
        HIF1alpha-induced upregulation of KLF4 promotes migration of human vascular smooth muscle cells under hypoxia.
        J Cell Physiol. 2020; 235: 141-150
        • Bourgeois A
        • Lambert C
        • Habbout K
        • et al.
        FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension.
        J Mol Med (Berl). 2018; 96: 223-235
        • Raghavan A
        • Zhou G
        • Zhou Q
        • et al.
        Hypoxia-induced pulmonary arterial smooth muscle cell proliferation is controlled by forkhead box M1.
        Am J Respir Cell Mol Biol. 2012; 46: 431-436
        • Dai Z
        • Zhu MM
        • Peng Y
        • et al.
        Endothelial and smooth muscle cell interaction via FoxM1 signaling mediates vascular remodeling and pulmonary hypertension.
        Am J Respir Crit Care Med. 2018; 198: 788-802
        • Savai R
        • Al-Tamari HM
        • Sedding D
        • et al.
        Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension.
        Nat Med. 2014; 20: 1289-1300
        • Yan Y
        • Wang XJ
        • Li SQ
        • et al.
        Elevated levels of plasma transforming growth factor-beta1 in idiopathic and heritable pulmonary arterial hypertension.
        Int J Cardiol. 2016; 222: 368-374
        • Thomas M
        • Docx C
        • Holmes AM
        • et al.
        Activin-like kinase 5 (ALK5) mediates abnormal proliferation of vascular smooth muscle cells from patients with familial pulmonary arterial hypertension and is involved in the progression of experimental pulmonary arterial hypertension induced by monocrotaline.
        Am J Pathol. 2009; 174: 380-389
        • Yu PB
        • Deng DY
        • Beppu H
        • et al.
        Bone morphogenetic protein (BMP) type II receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells.
        J Biol Chem. 2008; 283: 3877-3888
        • Calvier L
        • Chouvarine P
        • Legchenko E
        • et al.
        PPARgamma Links BMP2 and TGFbeta1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism.
        Cell Metab. 2017; 25 (1118-34 e7)
        • Xu XQ
        • Jing ZC
        High-altitude pulmonary hypertension.
        Eur Respir Rev. 2009; 18: 13-17
        • Sime F
        • Penaloza D
        • Ruiz L
        Bradycardia, increased cardiac output, and reversal of pulmonary hypertension in altitude natives living at sea level.
        Br Heart J. 1971; 33: 647-657
        • Chen J
        • Wang YX
        • Dong MQ
        • et al.
        Reoxygenation reverses hypoxic pulmonary arterial remodeling by inducing smooth muscle cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction.
        J Am Heart Assoc. 2017; 6e005602
        • Sluiter I
        • van Heijst A
        • Haasdijk R
        • et al.
        Reversal of pulmonary vascular remodeling in pulmonary hypertensive rats.
        Exp Mol Pathol. 2012; 93: 66-73
        • Dromparis P
        • Paulin R
        • Stenson TH
        • Haromy A
        • Sutendra G
        • Michelakis ED
        Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension.
        Circulation. 2013; 127: 115-125
        • Hung CF
        • Wilson CL
        • Schnapp LM
        Pericytes in the Lung.
        Adv Exp Med Biol. 2019; 1122: 41-58
        • Yuan K
        • Agarwal S
        • Chakraborty A
        • et al.
        Lung pericytes in pulmonary vascular physiology and pathophysiology.
        Compr Physiol. 2021; 11: 2227-2247
        • Bordenave J
        • Tu L
        • Berrebeh N
        • et al.
        Lineage tracing reveals the dynamic contribution of pericytes to the blood vessel remodeling in pulmonary hypertension.
        Arterioscler Thromb Vasc Biol. 2020; 40: 766-782
        • Ricard N
        • Tu L
        • Le Hiress M
        • et al.
        Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension.
        Circulation. 2014; 129: 1586-1597
        • Yuan K
        • Shamskhou EA
        • Orcholski ME
        • et al.
        Loss of endothelium-derived wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension.
        Circulation. 2019; 139: 1710-1724
        • Stenmark KR
        • Nozik-Grayck E
        • Gerasimovskaya E
        • et al.
        The adventitia: essential role in pulmonary vascular remodeling.
        Compr Physiol. 2011; 1: 141-161
        • Chazova I
        • Loyd JE
        • Zhdanov VS
        • Newman JH
        • Belenkov Y
        • Meyrick B
        Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension.
        Am J Pathol. 1995; 146: 389-397
        • Das M
        • Dempsey EC
        • Reeves JT
        • Stenmark KR
        Selective expansion of fibroblast subpopulations from pulmonary artery adventitia in response to hypoxia.
        Am J Physiol Lung Cell Mol Physiol. 2002; 282: L976-L986
        • Das M
        • Bouchey DM
        • Moore MJ
        • Hopkins DC
        • Nemenoff RA
        • Stenmark KR
        Hypoxia-induced proliferative response of vascular adventitial fibroblasts is dependent on g protein-mediated activation of mitogen-activated protein kinases.
        J Biol Chem. 2001; 276: 15631-15640
        • Thenappan T
        • Chan SY
        • Weir EK
        Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension.
        Am J Physiol Heart Circ Physiol. 2018; 315 (H1322-h31)
        • Mecham RP
        • Whitehouse LA
        • Wrenn DS
        • et al.
        Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension.
        Science. 1987; 237: 423-426
        • Poiani GJ
        • Tozzi CA
        • Yohn SE
        • et al.
        Collagen and elastin metabolism in hypertensive pulmonary arteries of rats.
        Circ Res. 1990; 66: 968-978
        • Shifren A
        • Durmowicz AG
        • Knutsen RH
        • Faury G
        • Mecham RP
        Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure.
        J Appl Physiol. 1985; 105 (2008): 1610-1619
        • Lin CJ
        • Staiculescu MC
        • Hawes JZ
        • et al.
        Heterogeneous cellular contributions to elastic laminae formation in arterial wall development.
        Circ Res. 2019; 125: 1006-1018
        • Todorovich-Hunter L
        • Dodo H
        • Ye C
        • McCready L
        • Keeley FW
        • Rabinovitch M
        Increased pulmonary artery elastolytic activity in adult rats with monocrotaline-induced progressive hypertensive pulmonary vascular disease compared with infant rats with nonprogressive disease.
        Am Rev Respir Dis. 1992; 146: 213-223
        • Sweatt AJ
        • Miyagawa K
        • Rhodes CJ
        • et al.
        Severe pulmonary arterial hypertension is characterized by increased neutrophil elastase and relative elafin deficiency.
        Chest. 2021; 160: 1442-1458
        • Zaidi SH
        • You XM
        • Ciura S
        • Husain M
        • Rabinovitch M
        Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension.
        Circulation. 2002; 105: 516-521
        • Batah SS
        • Alda MA
        • Rodrigues Lopes Roslindo Figueira R
        • et al.
        In situ evidence of collagen V and interleukin-6/interleukin-17 activation in vascular remodeling of experimental pulmonary hypertension.
        Pathobiology. 2020; 87: 356-366
        • Bertero T
        • Cottrill KA
        • Lu Y
        • et al.
        Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit.
        Cell Rep. 2015; 13: 1016-1032
        • Damico R
        • Kolb TM
        • Valera L
        • et al.
        Serum endostatin is a genetically determined predictor of survival in pulmonary arterial hypertension.
        Am J Respir Crit Care Med. 2015; 191: 208-218
        • Goyanes AM
        • Moldobaeva A
        • Marimoutou M
        • et al.
        Functional impact of human genetic variants of COL18A1/endostatin on pulmonary endothelium.
        Am J Respir Cell Mol Biol. 2020; 62: 524-534
        • Simpson CE
        • Griffiths M
        • Yang J
        • et al.
        COL18A1 genotypic associations with endostatin levels and clinical features in pulmonary arterial hypertension: a quantitative trait association study.
        ERJ Open Res. 2022; 8 (00725-2021)
        • Hu Y
        • Chi L
        • Kuebler WM
        • Goldenberg NM
        Perivascular inflammation in pulmonary arterial hypertension.
        Cells. 2020; 9: 2338
        • Tuder RM
        • Groves B
        • Badesch DB
        • Voelkel NF
        Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension.
        Am J Pathol. 1994; 144: 275-285
        • Yu YA
        • Malakhau Y
        • Yu CA
        • et al.
        Nonclassical monocytes sense hypoxia, regulate pulmonary vascular remodeling, and promote pulmonary hypertension.
        J Immunol. 2020; 204: 1474-1485
        • Zaloudikova M
        • Vytasek R
        • Vajnerova O
        • et al.
        Depletion of alveolar macrophages attenuates hypoxic pulmonary hypertension but not hypoxia-induced increase in serum concentration of MCP-1.
        Physiol Res. 2016; 65: 763-768
        • Rabinovitch M
        • Guignabert C
        • Humbert M
        • Nicolls MR
        Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.
        Circ Res. 2014; 115: 165-175
        • Hurst LA
        • Dunmore BJ
        • Long L
        • et al.
        TNFalpha drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling.
        Nat Commun. 2017; 8: 14079
        • Fujita M
        • Shannon JM
        • Irvin CG
        • et al.
        Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2001; 280: L39-L49
        • Zhang LL
        • Lu J
        • Li MT
        • Wang Q
        • Zeng XF
        Preventive and remedial application of etanercept attenuate monocrotaline-induced pulmonary arterial hypertension.
        Int J Rheum Dis. 2016; 19: 192-198
        • Can MM
        • Tanboğa IH
        • Demircan HC
        • et al.
        Enhanced hemostatic indices in patients with pulmonary arterial hypertension: an observational study.
        Thromb Res. 2010; 126: 280-282
        • Zheng YG
        • Yang T
        • Xiong CM
        • et al.
        Platelet distribution width and mean platelet volume in idiopathic pulmonary arterial hypertension.
        Heart Lung Circ. 2015; 24: 566-572
        • Yaoita N
        • Shirakawa R
        • Fukumoto Y
        • et al.
        Platelets are highly activated in patients of chronic thromboembolic pulmonary hypertension.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2486-2494
        • Tournier A
        • Wahl D
        • Chaouat A
        • et al.
        Calibrated automated thrombography demonstrates hypercoagulability in patients with idiopathic pulmonary arterial hypertension.
        Thromb Res. 2010; 126: e418-e422
        • Melnichnikova O
        • Simakova M
        • Moiseeva O
        • et al.
        The dynamics of thrombin formation in patients with pulmonary arterial hypertension.
        Thrombosis Research. 2021; 208: 230-232
        • Vrigkou E
        • Tsantes AE
        • Kopterides P
        • et al.
        Coagulation profiles of pulmonary arterial hypertension patients, assessed by non-conventional hemostatic tests and markers of platelet activation and endothelial dysfunction.
        Diagnostics (Basel). 2020; 10: 758
        • Aulak KS
        • Al Abdi S
        • Li L
        • et al.
        Disease-specific platelet signaling defects in idiopathic pulmonary arterial hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2021; 320: L739-LL49
        • McDowell RE
        • Aulak KS
        • Almoushref A
        • et al.
        Platelet glycolytic metabolism correlates with hemodynamic severity in pulmonary arterial hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2020; 318 (L562-L9)
        • Nguyen QL
        • Corey C
        • White P
        • et al.
        Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity.
        JCI Insight. 2017; 2: e91415
        • Ge X
        • Zhang W
        • Zhu T
        • et al.
        Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/LOX-1 signaling-impelled intercellular communication.
        Cell Signal. 2021; 87110149
        • Bauer EM
        • Chanthaphavong RS
        • Sodhi CP
        • Hackam DJ
        • Billiar TR
        • Bauer PM
        Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension.
        Circ Res. 2014; 114: 1596-1600
        • Hervé P
        • Launay J-M
        • Scrobohaci M-L
        • et al.
        Increased plasma serotonin in primary pulmonary hypertension.
        The American Journal of Medicine. 1995; 99: 249-254
        • Herve P
        • Drouet L
        • Dosquet C
        • et al.
        Primary pulmonary hypertension in a patient with a familial platelet storage pool disease: role of serotonin.
        Am J Med. 1990; 89: 117-120