Advertisement
The Journal of Heart and Lung Transplantation
International Society for Heart and Lung Transplantation.

Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies

Published:December 14, 2022DOI:https://doi.org/10.1016/j.healun.2022.12.009
      Despite significant advances in therapies, heart failure (HF) remains a progressive disease that, once advanced, is associated with significant death and disability. Cardiac replacement therapies with left ventricular assist device (LVAD) and heart transplantation (HT) are the only treatment options for advanced HF, while lifesaving they can also be lifespan limiting due to the associated complications. Systemic inflammation is mechanistically important in HF pathophysiology and progression. However, directly targeting inflammation in HF has not been beneficial thus far. These failed attempts at therapeutics might be related to our limited understanding of the factors that cause inflammation in HF, and, therefore, to our inability to investigate these triggers in interventional studies. Observational studies have consistently demonstrated associations between alterations in the digestive (gut and oral) microbiome, inflammation and HF risk and progression. Additionally, recent data indicate that these microbial perturbations persist following LVAD and HT, along with residual inflammation and oxidative stress. Furthermore, there is rising recognition of the critical contribution of the microbiome to the metabolism of immunosuppressive drugs after HT. Cumulatively, these findings might posit a mechanistic link between microbiome alterations, systemic inflammation, and adverse outcomes in HF patients before and after cardiac replacement therapies. This review (1) provides an update on available data linking changes in digestive tract microbiota, inflammation, and oxidative stress, to HF pathogenesis and progression; (2) describes evolution of these relationships following LVAD and HT; and (3) outlines present and future intervention strategies that can manipulate the microbiome and possibly modify HF disease trajectory.

      KEYWORDS

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Heart and Lung Transplantation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roger VL
        Epidemiology of heart failure.
        Circ Res. 2013; 113: 646-659
        • Roger VL
        • Weston SA
        • Redfield MM
        • et al.
        Trends in heart failure incidence and survival in a community-based population.
        JAMA. 2004; 292: 344-350
        • Mozaffarian D
        • Benjamin EJ
        • et al.
        • Writing Group M
        Heart disease and stroke statistics-2016 update: a report from the American Heart Association.
        Circulation. 2016; 133: e38-360
        • Tang WH
        • Kitai T
        • Hazen SL
        Gut microbiota in cardiovascular health and disease.
        Circ Res. 2017; 120: 1183-1196
        • Tang WHW
        • Li DY
        • Hazen SL
        Dietary metabolism, the gut microbiome, and heart failure.
        Nat Rev Cardiol. 2019; 16: 137-154
        • Polidori MC
        • Pratico D
        • Savino K
        • Rokach J
        • Stahl W
        • Mecocci P.
        Increased F2 isoprostane plasma levels in patients with congestive heart failure are correlated with antioxidant status and disease severity.
        J Card Fail. 2004; 10: 334-338
        • Colombo PC
        • Banchs JE
        • Celaj S
        • et al.
        Endothelial cell activation in patients with decompensated heart failure.
        Circulation. 2005; 111: 58-62
        • Francis GS
        • Benedict C
        • Johnstone DE
        • et al.
        Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD).
        Circulation. 1990; 82: 1724-1729
        • Munger MA
        • Johnson B
        • Amber IJ
        • Callahan KS
        • Gilbert EM
        Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.
        Am J Cardiol. 1996; 77: 723-727
        • Testa M
        • Yeh M
        • Lee P
        • et al.
        Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension.
        J Am Coll Cardiol. 1996; 28: 964-971
        • Tromp J
        • Khan MA
        • Klip IT
        • et al.
        Biomarker profiles in heart failure patients with preserved and reduced ejection fraction.
        J Am Heart Assoc. 2017; 6: 1-11
        • Michowitz Y
        • Arbel Y
        • Wexler D
        • et al.
        Predictive value of high sensitivity CRP in patients with diastolic heart failure.
        Int J Cardiol. 2008; 125: 347-351
        • Abernethy A
        • Raza S
        • Sun JL
        • et al.
        Pro-inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction.
        J Am Heart Assoc. 2018; 7
        • Putko BN
        • Wang Z
        • Lo J
        • et al.
        Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology.
        PLoS One. 2014; 9: e99495
        • Colombo PC
        • Ganda A
        • Lin J
        • et al.
        Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome.
        Heart Fail Rev. 2012; 17: 177-190
        • Kjekshus J
        • Apetrei E
        • Barrios V
        • et al.
        Rosuvastatin in older patients with systolic heart failure.
        N Engl J Med. 2007; 357: 2248-2261
        • Tavazzi L
        • Maggioni AP
        • Marchioli R
        • et al.
        Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2008; 372: 1231-1239
        • Mann DL
        • McMurray JJ
        • Packer M
        • et al.
        Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL).
        Circulation. 2004; 109: 1594-1602
        • Chung ES
        • Packer M
        • Lo KH
        • Fasanmade AA
        • Willerson JT
        • Anti TNFTACHFI
        Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial.
        Circulation. 2003; 107: 3133-3140
        • Bielecka-Dabrowa A
        • Bytyci I
        • Von Haehling S
        • et al.
        Association of statin use and clinical outcomes in heart failure patients: a systematic review and meta-analysis.
        Lipids Health Dis. 2019; 18: 188
        • Liu G
        • Zheng XX
        • Xu YL
        • Ru J
        • Hui RT
        • Huang XH.
        Meta-analysis of the effect of statins on mortality in patients with preserved ejection fraction.
        Am J Cardiol. 2014; 113: 1198-1204
        • Everett BM
        • Cornel JH
        • Lainscak M
        • et al.
        Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure.
        Circulation. 2019; 139: 1289-1299
        • Ellekilde M
        • Selfjord E
        • Larsen CS
        • et al.
        Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice.
        Sci Rep. 2014; 4: 5922
        • Backhed F
        • Ding H
        • Wang T
        • et al.
        The gut microbiota as an environmental factor that regulates fat storage.
        Proc Natl Acad Sci U S A. 2004; 101: 15718-15723
        • Backhed F
        • Manchester JK
        • Semenkovich CF
        • Gordon JI.
        Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.
        Proc Natl Acad Sci U S A. 2007; 104: 979-984
        • Ley RE
        • Turnbaugh PJ
        • Klein S
        • Gordon JI.
        Microbial ecology: human gut microbes associated with obesity.
        Nature. 2006; 444: 1022-1023
        • Turnbaugh PJ
        • Hamady M
        • Yatsunenko T
        • et al.
        A core gut microbiome in obese and lean twins.
        Nature. 2009; 457: 480-484
        • Turnbaugh PJ
        • Ley RE
        • Mahowald MA
        • Magrini V
        • Mardis ER
        • Gordon JI.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Benakis C
        • Brea D
        • Caballero S
        • et al.
        Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells.
        Nat Med. 2016; 22: 516-523
        • Wang J
        • Jia H.
        Metagenome-wide association studies: fine-mining the microbiome.
        Nat Rev Microbiol. 2016; 14: 508-522
        • Wang Z
        • Zhao Y.
        Gut microbiota derived metabolites in cardiovascular health and disease.
        Protein Cell. 2018; 9: 416-431
        • Qin J
        • Li Y
        • Cai Z
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60
        • Park DY
        • Park JY
        • Lee D
        • Hwang I
        • Kim HS.
        Leaky gum: the revisited origin of systemic diseases.
        Cells. 2022; 11: 1-17
        • Billings F
        Chronic focal infections and their etiologic relations to arthritis and nephritis.
        Arch Int Med. 1912; IX: 484-498
        • Pussinen PJ
        • Havulinna AS
        • Lehto M
        • Sundvall J
        • Salomaa V.
        Endotoxemia is associated with an increased risk of incident diabetes.
        Diabetes Care. 2011; 34: 392-397
        • Lassenius MI
        • Pietilainen KH
        • Kaartinen K
        • et al.
        Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation.
        Diabetes Care. 2011; 34: 1809-1815
        • Nymark M
        • Pussinen PJ
        • Tuomainen AM
        • et al.
        Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes.
        Diabetes Care. 2009; 32: 1689-1693
        • Charalambous BM
        • Stephens RC
        • Feavers IM
        • Montgomery HE
        Role of bacterial endotoxin in chronic heart failure: the gut of the matter.
        Shock. 2007; 28: 15-23
        • Simon GL
        • Gorbach SL
        The human intestinal microflora.
        Dig Dis Sci. 1986; 31: 147S-162S
        • Simon GL
        • Gorbach SL
        Intestinal flora in health and disease.
        Gastroenterology. 1984; 86: 174-193
        • Wang Z
        • Klipfell E
        • Bennett BJ
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Kitai T
        • Tang WHW
        Gut microbiota in cardiovascular disease and heart failure.
        Clin Sci (Lond). 2018; 132: 85-91
        • Louis P
        • Hold GL
        • Flint HJ
        The gut microbiota, bacterial metabolites and colorectal cancer.
        Nat Rev Microbiol. 2014; 12: 661-672
        • Dinan TG
        • Cryan JF
        Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration.
        J Physiol. 2017; 595: 489-503
        • Erny D
        • Hrabe de Angelis AL
        • Jaitin D
        • et al.
        Host microbiota constantly control maturation and function of microglia in the CNS.
        Nat Neurosci. 2015; 18: 965-977
        • Sampson TR
        • Debelius JW
        • Thron T
        • et al.
        Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease.
        Cell. 2016; 167 (e1412): 1469-1480
        • Yang T
        • Santisteban MM
        • Rodriguez V
        • et al.
        Gut dysbiosis is linked to hypertension.
        Hypertension. 2015; 65: 1331-1340
        • Gevers D
        • Kugathasan S
        • Denson LA
        • et al.
        The treatment-naive microbiome in new-onset Crohn's disease.
        Cell Host Microbe. 2014; 15: 382-392
        • de Clercq NC
        • Frissen MN
        • Groen AK
        • Nieuwdorp M
        Gut Microbiota and the Gut-Brain axis: new insights in the pathophysiology of metabolic syndrome.
        Psychosom Med. 2017; 79: 874-879
        • Festi D
        • Schiumerini R
        • Eusebi LH
        • Marasco G
        • Taddia M
        • Colecchia A
        Gut microbiota and metabolic syndrome.
        World J Gastroenterol. 2014; 20: 16079-16094
        • Arumugam M
        • Raes J
        • Pelletier E
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Kummen M
        • Mayerhofer CCK
        • Vestad B
        • et al.
        Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts.
        J Am Coll Cardiol. 2018; 71: 1184-1186
        • Pluznick JL
        Renal and cardiovascular sensory receptors and blood pressure regulation.
        Am J Physiol Renal Physiol. 2013; 305: F439-F444
        • Bartolomaeus H
        • Balogh A
        • Yakoub M
        • et al.
        The short-chain fatty acid propionate protects from hypertensive cardiovascular damage.
        Circulation. 2019; 139: 1407-1421
        • Tang TWH
        • Chen HC
        • Chen CY
        • et al.
        Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair.
        Circulation. 2019; 139: 647-659
        • Fung KY
        • Cosgrove L
        • Lockett T
        • Head R
        • Topping DL
        A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate.
        Br J Nutr. 2012; 108: 820-831
        • Wilson AJ
        • Chueh AC
        • Togel L
        • et al.
        Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction.
        Cancer Res. 2010; 70: 609-620
        • Hamer HM
        • Jonkers D
        • Venema K
        • Vanhoutvin S
        • Troost FJ
        • Brummer RJ
        Review article: the role of butyrate on colonic function.
        Aliment Pharmacol Ther. 2008; 27: 104-119
        • Sandek A
        • Bauditz J
        • Swidsinski A
        • et al.
        Altered intestinal function in patients with chronic heart failure.
        J Am Coll Cardiol. 2007; 50: 1561-1569
        • Sandek A
        • Swidsinski A
        • Schroedl W
        • et al.
        Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia.
        J Am Coll Cardiol. 2014; 64: 1092-1102
        • Tang WH
        • Wang Z
        • Fan Y
        • et al.
        Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis.
        J Am Coll Cardiol. 2014; 64: 1908-1914
        • Tang WH
        • Wang Z
        • Levison BS
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Troseid M
        • Ueland T
        • Hov JR
        • et al.
        Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure.
        J Intern Med. 2015; 277: 717-726
        • Suzuki T
        • Yazaki Y
        • Voors AA
        • et al.
        Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure (from BIOSTAT-CHF).
        Eur J Heart Fail. 2018;
        • Organ CL
        • Otsuka H
        • Bhushan S
        • et al.
        Choline diet and its gut microbe-derived metabolite, trimethylamine N-Oxide, exacerbate pressure overload-induced heart failure.
        Circ Heart Fail. 2016; 9e002314
        • Gil-Cruz C
        • Perez-Shibayama C
        • De Martin A
        • et al.
        Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy.
        Science. 2019; 366: 881-886
        • Luedde M
        • Winkler T
        • Heinsen FA
        • et al.
        Heart failure is associated with depletion of core intestinal microbiota.
        ESC Heart Fail. 2017; 4: 282-290
        • Pasini E
        • Aquilani R
        • Testa C
        • et al.
        Pathogenic Gut Flora in patients with chronic heart failure.
        JACC Heart Fail. 2016; 4: 220-227
        • Cui X
        • Ye L
        • Li J
        • et al.
        Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients.
        Sci Rep. 2018; 8: 635
        • Kamo T
        • Akazawa H
        • Suda W
        • et al.
        Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure.
        PLoS One. 2017; 12e0174099
        • Beale AL
        • O'Donnell JA
        • Nakai ME
        • et al.
        The Gut Microbiome of heart failure with preserved ejection fraction.
        J Am Heart Assoc. 2021; 10e020654
        • Yuzefpolskaya M
        • Bohn B
        • Javaid A
        • et al.
        Levels of trimethylamine N-Oxide remain elevated long term after left ventricular assist device and heart transplantation and are independent from measures of inflammation and gut dysbiosis.
        Circ Heart Fail. 2021; 14e007909
        • Yuzefpolskaya M
        • Bohn B
        • Nasiri M
        • et al.
        Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant.
        J Heart Lung Transplant. 2020; 39: 880-890
        • Tuganbaev T
        • Yoshida K
        • Honda K
        The effects of oral microbiota on health.
        Science. 2022; 376: 934-936
        • Eke PI
        • Dye BA
        • Wei L
        • et al.
        Update on prevalence of periodontitis in adults in the United States: NHANES 2009 - 2012.
        J Periodontol. 2015; 86: 611-622
        • Eke PI
        • Dye BA
        • Wei L
        • Thornton-Evans GO
        • Genco RJ
        Prevalence of periodontitis in adults in the United States: 2009 and 2010.
        J Dental Res. 2012; 91: 914-920
        • Kebschull M
        • Demmer RT
        • Papapanou PN
        “Gum bug, leave my heart alone!”–epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis.
        J Dent Res. 2010; 89: 879-902
        • Demmer RT
        • Desvarieux M
        Periodontal infections and cardiovascular disease: the heart of the matter.
        J Am Dent Assoc. 2006; 137 (quiz 38S): 14S-20S
        • Lockhart PB
        • Bolger AF
        • Papapanou PN
        • et al.
        Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association.
        Circulation. 2012; 125: 2520-2544
        • Geerts SO
        • Nys M
        • De MP
        • et al.
        Systemic release of endotoxins induced by gentle mastication: association with periodontitis severity.
        J Periodontol. 2002; 73: 73-78
        • Pussinen PJ
        • Tuomisto K
        • Jousilahti P
        • Havulinna AS
        • Sundvall J
        • Salomaa V
        Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events.
        Arterioscler Thromb Vasc Biol. 2007; 27: 1433-1439
        • Liljestrand JM
        • Paju S
        • Buhlin K
        • et al.
        Lipopolysaccharide, a possible molecular mediator between periodontitis and coronary artery disease.
        J Clin Periodontol. 2017; 44: 784-792
        • Pussinen PJ
        • Vilkuna-Rautiainen T
        • Alfthan G
        • et al.
        Severe periodontitis enhances macrophage activation via increased serum lipopolysaccharide.
        Arterioscler Thromb Vasc Biol. 2004; 24: 2174-2180
        • Duncan C
        • Dougall H
        • Johnston P
        • et al.
        Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate.
        Nat Med. 1995; 1: 546-551
        • Goh CE
        • Trinh P
        • Colombo PC
        • et al.
        Association between nitrate-reducing oral bacteria and cardiometabolic outcomes: results from ORIGINS.
        J Am Heart Assoc. 2019; 8e013324
        • Goh CE
        • Bohn B
        • Marotz C
        • et al.
        Nitrite generating and depleting capacity of the oral microbiome and cardiometabolic risk: results from ORIGINS.
        J Am Heart Assoc. 2022; 11e023038
        • Kato T
        • Yamazaki K
        • Nakajima M
        • et al.
        Oral administration of porphyromonas gingivalis alters the gut microbiome and serum metabolome.
        mSphere. 2018; 3: 1-14
        • Olsen I
        • Yamazaki K
        Can oral bacteria affect the microbiome of the gut?.
        J Oral Microbiol. 2019; 111586422
        • Grosman-Rimon L
        • Jacobs I
        • Tumiati LC
        • et al.
        Longitudinal assessment of inflammation in recipients of continuous-flow left ventricular assist devices.
        Can J Cardiol. 2015; 31: 348-356
        • Grosman-Rimon L
        • McDonald MA
        • Jacobs I
        • et al.
        Markers of inflammation in recipients of continuous-flow left ventricular assist devices.
        ASAIO J. 2014; 60: 657-663
        • Andreassen AK
        • Nordoy I
        • Simonsen S
        • et al.
        Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation.
        Am J Cardiol. 1998; 81: 604-608
        • Pagani FD
        • Baker LS
        • Hsi C
        • Knox M
        • Fink MP
        • Visner MS
        Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs.
        J Clin Invest. 1992; 90: 389-398
        • Troseid M
        • Mayerhofer CCK
        • Broch K
        • et al.
        The carnitine-butyrobetaine-TMAO pathway after cardiac transplant: impact on cardiac allograft vasculopathy and acute rejection.
        J Heart Lung Transplant. 2019; 38: 1097-1103
        • Bai YZ
        • Roberts SH
        • Kreisel D
        • Nava RG
        Microbiota in heart and lung transplantation: implications for innate-adaptive immune interface.
        Curr Opin Organ Transplant. 2021; 26: 609-614
        • Mitchell AB
        The lung microbiome and transplantation.
        Curr Opin Organ Transplant. 2019; 24: 305-310
        • Pahlman LI
        • Manoharan L
        • Aspelund AS
        Divergent airway microbiomes in lung transplant recipients with or without pulmonary infection.
        Respir Res. 2021; 22: 118
        • Su J
        • Li CX
        • Liu HY
        • et al.
        The airway microbiota signatures of infection and rejection in lung transplant recipients.
        Microbiol Spectr. 2022; 10e0034421
        • Souai N
        • Zidi O
        • Mosbah A
        • et al.
        Impact of the post-transplant period and lifestyle diseases on human gut microbiota in kidney graft recipients.
        Microorganisms. 2020; 8: 1-19
        • Wang J
        • Li X
        • Wu X
        • et al.
        Gut microbiota alterations associated with antibody-mediated rejection after kidney transplantation.
        Appl Microbiol Biotechnol. 2021; 105: 2473-2484
        • Lee JR
        • Muthukumar T
        • Dadhania D
        • et al.
        Gut microbiota and tacrolimus dosing in kidney transplantation.
        PLoS One. 2015; 10e0122399
        • Guo Y
        • Crnkovic CM
        • Won KJ
        • et al.
        Commensal gut bacteria convert the immunosuppressant tacrolimus to less potent metabolites.
        Drug Metab Dispos. 2019; 47: 194-202
        • Jennings DL
        • Bohn B
        • Zuver A
        • et al.
        Gut microbial diversity, inflammation, and oxidative stress are associated with tacrolimus dosing requirements early after heart transplantation.
        PLoS One. 2020; 15e0233646
        • Flannigan KL
        • Taylor MR
        • Pereira SK
        • et al.
        An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil.
        J Heart Lung Transplant. 2018; 37: 1047-1059
        • Flannigan KL
        • Rajbar T
        • Moffat A
        • et al.
        Changes in composition of the gut bacterial microbiome after fecal microbiota transplantation for recurrent clostridium difficile infection in a pediatric heart transplant patient.
        Front Cardiovasc Med. 2017; 4: 17
        • Schulze-Spate U
        • Mizani I
        • Salaverry KR
        • et al.
        Periodontitis and bone metabolism in patients with advanced heart failure and after heart transplantation.
        ESC Heart Fail. 2017; 4: 169-177
        • Mayerhofer CCK
        • Kummen M
        • Holm K
        • et al.
        Low fibre intake is associated with gut microbiota alterations in chronic heart failure.
        ESC Heart Fail. 2020; 7: 456-466
        • Nguyen HT
        • Bertoni AG
        • Nettleton JA
        • Bluemke DA
        • Levitan EB
        • Burke GL
        DASH eating pattern is associated with favorable left ventricular function in the multi-ethnic study of atherosclerosis.
        J Am Coll Nutr. 2012; 31: 401-407
        • Levitan EB
        • Wolk A
        • Mittleman MA
        Relation of consistency with the dietary approaches to stop hypertension diet and incidence of heart failure in men aged 45 to 79 years.
        Am J Cardiol. 2009; 104: 1416-1420
        • Levitan EB
        • Wolk A
        • Mittleman MA
        Consistency with the DASH diet and incidence of heart failure.
        Arch Intern Med. 2009; 169: 851-857
        • Salehi-Abargouei A
        • Maghsoudi Z
        • Shirani F
        • Azadbakht L
        Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases–incidence: a systematic review and meta-analysis on observational prospective studies.
        Nutrition. 2013; 29: 611-618
        • Estruch R
        • Ros E
        • Salas-Salvado J
        • et al.
        Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts.
        N Engl J Med. 2018; 378: e34
        • David LA
        • Maurice CF
        • Carmody RN
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Wu GD
        • Chen J
        • Hoffmann C
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Gan XT
        • Ettinger G
        • Huang CX
        • et al.
        Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat.
        Circ Heart Fail. 2014; 7: 491-499
        • Lam V
        • Su J
        • Koprowski S
        • et al.
        Intestinal microbiota determine severity of myocardial infarction in rats.
        FASEB J. 2012; 26: 1727-1735
        • Costanza AC
        • Moscavitch SD
        • Faria Neto HC
        • Mesquita ET
        Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial.
        Int J Cardiol. 2015; 179: 348-350
        • Awoyemi A
        • Mayerhofer C
        • Felix AS
        • et al.
        Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: Results from the randomized GutHeart trial.
        EBioMedicine. 2021; 70103511
        • Demmer RT
        • Trinquart L
        • Zuk A
        • et al.
        The influence of anti-infective periodontal treatment on C-reactive protein: a systematic review and meta-analysis of randomized controlled trials.
        PLoS One. 2013; 8: e77441
        • Luthra S
        • Orlandi M
        • Hussain SB
        • et al.
        Treatment of periodontitis and C-reactive protein: a systematic review and meta-analysis of randomized clinical trials.
        J Clin Periodontol. 2023; 50: 45-60
        • D'Aiuto F
        • Gkranias N
        • Bhowruth D
        • et al.
        Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial.
        Lancet Diabetes Endocrinol. 2018; 6: 954-965
        • Teeuw WJ
        • Gerdes VE
        • Loos BG
        Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis.
        Diabetes Care. 2010; 33: 421-427
        • Staley C
        • Hamilton MJ
        • Vaughn BP
        • et al.
        Successful resolution of recurrent clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; pragmatic cohort study.
        Am J Gastroenterol. 2017; 112: 940-947
        • Drozd M
        • Garland E
        • Walker AMN
        • et al.
        Infection-related hospitalization in heart failure with reduced ejection fraction: a prospective observational cohort study.
        Circ Heart Fail. 2020; 13e006746
        • Ueda T
        • Kawakami R
        • Horii M
        • et al.
        Noncardiovascular death, especially infection, is a significant cause of death in elderly patients with acutely decompensated heart failure.
        J Card Fail. 2014; 20: 174-180
        • Mendez-Bailon M
        • Jimenez-Garcia R
        • Hernandez-Barrera V
        • et al.
        Heart failure is a risk factor for suffering and dying of clostridium difficile infection. Results of a 15-year nationwide study in Spain.
        J Clin Med. 2020; 9: 1-13
        • Mamic P
        • Heidenreich PA
        • Hedlin H
        • Tennakoon L
        • Staudenmayer KL
        Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant clostridium difficile infection rates and in-hospital mortality.
        J Card Fail. 2016; 22: 891-900
        • Hensgens MP
        • Goorhuis A
        • Dekkers OM
        • van Benthem BH
        • Kuijper EJ
        All-cause and disease-specific mortality in hospitalized patients with Clostridium difficile infection: a multicenter cohort study.
        Clin Infect Dis. 2013; 56: 1108-1116
        • Berro ZZ
        • Hamdan RH
        • Dandache IH
        • Saab MN
        • Karnib HH
        • Younes MH
        Fecal microbiota transplantation for severe clostridium difficile infection after left ventricular assist device implantation: a case control study and concise review on the local and regional therapies.
        BMC Infect Dis. 2016; 16: 234
        • Cheng YW
        • Phelps E
        • Ganapini V
        • et al.
        Fecal microbiota transplantation for the treatment of recurrent and severe Clostridium difficile infection in solid organ transplant recipients: a multicenter experience.
        Am J Transplant. 2019; 19: 501-511
        • Bajaj JS
        • Khoruts A
        Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis.
        J Hepatol. 2020; 72: 1003-1027
        • Khoruts A
        • Staley C
        • Sadowsky MJ
        Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology.
        Nat Rev Gastroenterol Hepatol. 2021; 18: 67-80
        • Demmer RT
        Invited commentary: the microbiome and population health-considerations for enhancing study design and data analysis in observational and interventional epidemiology.
        Am J Epidemiol. 2018; 187: 1291-1294
        • Sinha R
        • Goedert JJ
        • Vogtmann E
        • et al.
        Quantification of human microbiome stability over six months: implications for epidemiological studies.
        Am J Epidemiol. 2018; 187: 1282-1290