Advertisement
The Journal of Heart and Lung Transplantation
International Society for Heart and Lung Transplantation.

Large animal preclinical investigation into the optimal extracorporeal life support configuration for pulmonary hypertension and right ventricular failure

Published:November 06, 2022DOI:https://doi.org/10.1016/j.healun.2022.10.023

      Introduction

      Right ventricular failure (RVF) is a major cause of mortality in pulmonary hypertension (PH). Mechanical circulatory support holds promise for patients with medically refractory PH, but there are no clinical devices for long-term right ventricular (RV) support. Investigations into optimal device parameters and circuit configurations for PH-induced RVF (PH-RVF) are needed.

      Methods

      Eleven sheep underwent previously published chronic PH model. We then evaluated a low-profile, ventricular assist device (VAD)-quality pump combined with a novel low-resistance membrane oxygenator (Pulmonary Assist Device, PAD) under one of four central cannulation strategies: right atrium-to-left atrium (RA-LA, N = 3), RA-to-pulmonary artery (RA-PA, N=3), pumpless pulmonary artery-to-left atrium (PA-LA, N = 2), and RA-to-ascending aorta (RA-Ao, N = 3). Acute-on-chronic RVF (AoC RVF) was induced, and mechanical support was provided for up to 6 hours at blood flow rates of 1 to 3 liter/min. Circuit parameters, physiologic, hemodynamic, and echocardiography data were collected.

      Results

      The RA-LA configuration achieved blood flow of 3 liter/min. Meanwhile, RA-PA and RA-Ao faced challenges maintaining 3 liter/min of flow due to higher circuit afterload. Pumpless PA-LA was flow-limited due to anatomical limitations inherent to this animal model. RA-LA and RA-Ao demonstrated serial RV unloading with increasing circuit flow, while RA-PA did not. RA-LA also improved left ventricular (LV) and septal geometry by echocardiographic assessment and had the lowest inotropic dependence.

      Conclusion

      RA-LA and RA-Ao configurations unload the RV, while RA-LA also lowers pump speed and inotropic requirements, and improves LV mechanics. RA-PA provide inferior support for PH-RVF, while an alternate animal model is needed to evaluate PA-LA.

      KEYWORDS

      Abbreviations:

      AAMI (Association for the Advancement of Medical Instrumentation), Ao (aorta), AoC (acute-on-chronic), ECLS (extracorporeal life support), EOPA (elongated one-piece arterial (cannula)), Fr (French), MAP (mean arterial pressure), O2 (oxygen), PA (pulmonary artery), PAD (Pulmonary Assist Device), PH (pulmonary hypertension), RA (right atrium), RVF (right ventricular failure), RVSP (right ventricular systolic pressure), VA (veno-arterial), VAD (ventricular assist device)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Heart and Lung Transplantation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McLaughlin VV
        • McGoon MD
        Pulmonary arterial hyperension.
        Circulation. 2006; 114: 1417-1431https://doi.org/10.1161/CIRCULATIONAHA.104.503540
        • Vonk-Noordegraaf A
        • Haddad F
        • Chin KM
        • et al.
        Right heart adaptation to pulmonary arterial hypertension.
        J Am Coll Cardiol. 2013; 62: D22-D33https://doi.org/10.1016/j.jacc.2013.10.027
        • Housten T
        • Brown AM
        PH professional network: the burden of prior authorization for pulmonary hypertension medications: a practical guide for managing the process.
        Advances in Pulmonary Hypertension. 2018; 17: 126-131
        • Rosenzweig EB
        • Gannon WD
        • Madahar P
        • et al.
        Extracorporeal life support bridge for pulmonary hypertension: a high-volume single-center experience.
        J Heart Lung Transplant. 2019; 38: 1275-1285https://doi.org/10.1016/j.healun.2019.09.004
        • Abrams DC
        • Brodie D
        • Rosenzweig EB
        • Burkart KM
        • Agerstrand CL
        • Bacchetta MD.
        Upper-body extracorporeal membrane oxygenation as a strategy in decompensated pulmonary arterial hypertension.
        Pulm circ. 2013; 3: 432-435https://doi.org/10.4103/2045-8932.113178
        • Mehra MR
        • Goldstein DJ
        • Uriel N
        • et al.
        Two-year outcomes with a magnetically levitated cardiac pump in heart failure.
        N Engl J Med. 2018; 378: 1386-1395https://doi.org/10.1056/NEJMoa1800866
        • Lavee J
        • Mulzer J
        • Krabatsch T
        • et al.
        An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems.
        J Heart Lung Transplant. 2018; 37: 1399-1402https://doi.org/10.1016/j.healun.2018.08.008
        • John R
        • Long JW
        • Massey HT
        • et al.
        Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support.
        J Thorac Cardiovasc Surg. 2011; 141: 932-939https://doi.org/10.1016/j.jtcvs.2010.03.046
        • Chicotka S
        • Rosenzweig EB
        • Brodie D
        • Bacchetta M.
        The “Central Sport Model”: extracorporeal membrane oxygenation using the innominate artery for smaller patients as bridge to lung transplantation.
        ASAIO J. 2017; 63: e39-e44https://doi.org/10.1097/MAT.0000000000000427
        • Ranney DN
        • Benrashid E
        • Meza JM
        • et al.
        Central cannulation as a viable alternative to peripheral cannulation in extracorporeal membrane oxygenation.
        Semin Thorac Cardiovasc Surg. 2017; 29: 188-195https://doi.org/10.1053/j.semtcvs.2017.02.007
        • de Perrot M
        • Granton JT
        • McRae K
        • et al.
        Impact of extracorporeal life support on outcome in patients with idiopathic pulmonary arterial hypertension awaiting lung transplantation.
        J Heart Lung Transplant. 2011; 30: 997-1002https://doi.org/10.1016/j.healun.2011.03.002
        • Strueber M
        • Hoeper MM
        • Fischer S
        • et al.
        Bridge to thoracic organ transplantation in patients with pulmonary arterial hypertension using a pumpless lung assist device.
        Am J Transplant. 2009; 9: 853-857https://doi.org/10.1111/j.1600-6143.2009.02549.x
        • Tipograf Y
        • Salna M
        • Minko E
        • et al.
        Outcomes of extracorporeal membrane oxygenation as a bridge to lung transplantation.
        Ann Thorac Surg. 2019; 107: 1456-1463https://doi.org/10.1016/j.athoracsur.2019.01.032
        • Ukita R
        • Tipograf Y
        • Tumen A
        • et al.
        Left pulmonary artery ligation and chronic pulmonary artery banding model for inducing right ventricular—pulmonary hypertension in sheep.
        ASAIO J. 2021; 67: e44-e48https://doi.org/10.1097/MAT.0000000000001197
        • Ukita R
        • Stokes JW
        • Wu WK
        • et al.
        A large animal model for pulmonary hypertension and right ventricular failure: left pulmonary artery ligation and progressive main pulmonary artery banding in sheep.
        JoVE. 2021; : 62694https://doi.org/10.3791/62694
        • Ukita R
        • Tumen A
        • Stokes JW
        • et al.
        Progression toward decompensated right ventricular failure in the ovine pulmonary hypertension model.
        ASAIO J. 2021; (Publish Ahead of Print)https://doi.org/10.1097/MAT.0000000000001417
        • Uriel N
        • Sayer G
        • Addetia K
        • et al.
        Hemodynamic ramp tests in patients with left ventricular assist devices.
        JACC: Heart Failure. 2016; 4: 208-217https://doi.org/10.1016/j.jchf.2015.10.001
        • Nguyen HV
        • Havalad V
        • Aponte-Patel L
        • et al.
        Temporary biventricular pacing decreases the vasoactive-inotropic score after cardiac surgery: a substudy of a randomized clinical trial.
        J Thorac Cardiovasc Surg. 2013; 146: 296-301https://doi.org/10.1016/j.jtcvs.2012.07.020
        • Koponen T
        • Karttunen J
        • Musialowicz T
        • Pietiläinen L
        • Uusaro A
        • Lahtinen P.
        Vasoactive-inotropic score and the prediction of morbidity and mortality after cardiac surgery.
        Br J Anaesth. 2019; 122: 428-436https://doi.org/10.1016/j.bja.2018.12.019
        • Gaies MG
        • Gurney JG
        • Yen AH
        • et al.
        Vasoactive–inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass*.
        Pediatr Crit Care Med. 2010; 11: 234-238https://doi.org/10.1097/PCC.0b013e3181b806fc
        • Puwanant S
        • Park M
        • Popović ZB
        • et al.
        Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension.
        Circulation. 2010; 121: 259-266https://doi.org/10.1161/CIRCULATIONAHA.108.844340
        • Mockros LF
        • Leonard R.
        Compact cross-flow tubular oxygenators.
        Trans Am Soc Artif Intern Organs. 1985; 31: 628-633
        • Cook KE
        • Perlman CE
        • Seipelt R
        • Backer CL
        • Mavroudis C
        • Mockros LF.
        Hemodynamic and gas transfer properties of a compliant thoracic artificial lung.
        ASAIO J. 2005; 51: 404-411https://doi.org/10.1097/01.mat.0000169707.72242.8f
        • Vaslef SN
        • Cook KE
        • Leonard RJ
        • Mockros LF
        • Anderson RW.
        Design and evaluation of a new, low pressure loss, implantable artificial lung.
        ASAIO J. 1994; 40: M522-M526https://doi.org/10.1097/00002480-199407000-00055
        • Vaslef SN
        • Mockros LF
        • Anderson RW
        • Leonard RJ.
        Use of a mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators.
        ASAIO J. 1994; 40: 990-996
        • Duricki DA
        • Soleman S
        • Moon LDF.
        Analysis of longitudinal data from animals with missing values using SPSS.
        Nat Protoc. 2016; 11: 1112-1129https://doi.org/10.1038/nprot.2016.048
        • Bossone E
        • Duong-Wagner TH
        • Paciocco G
        • et al.
        Echocardiographic features of primary pulmonary hypertension.
        J Am Soc Echocardiogr. 1999; 12: 8
        • Pohlmann JR
        • Akay B
        • Camboni D
        • Koch KL
        • Mervak BM
        • Cook KE.
        A low mortality model of chronic pulmonary hypertension in sheep.
        J Surg Res. 2012; 175: 44-48https://doi.org/10.1016/j.jss.2011.02.049
        • Cook KE
        • Maxhimer J
        • Leonard DJ
        • Mavroudis C
        • Backer CL
        • Mockros LF.
        Platelet and leukocyte activation and design consequences for thoracic artificial lungs.
        ASAIO J. 2002; 48: 620-630https://doi.org/10.1097/00002480-200211000-00008
        • Santamore WP
        • Dell’Italia LJ
        Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function.
        Prog Cardiovasc Dis. 1998; 40: 289-308https://doi.org/10.1016/s0033-0620(98)80049-2
        • Biscotti M
        • Vail E
        • Cook KE
        • Kachulis B
        • Rosenzweig EB
        • Bacchetta M.
        Extracorporeal membrane oxygenation with subclavian artery cannulation in awake patients with pulmonary hypertension.
        ASAIO J. 2014; 60: 748-750https://doi.org/10.1097/MAT.0000000000000123
        • Rosenzweig EB
        • Brodie D
        • Abrams DC
        • Agerstrand CL
        • Bacchetta M.
        Extracorporeal membrane oxygenation as a novel bridging strategy for acute right heart failure in group 1 pulmonary arterial hypertension.
        ASAIO J. 2014; 60: 129-133https://doi.org/10.1097/MAT.0000000000000021
        • Downey P
        • Ragalie W
        • Gudzenko V
        • Ardehali A.
        Ambulatory central veno-arterial extracorporeal membrane oxygenation in lung transplant candidates.
        J Heart Lung Transplant. 2019; 38: 1317-1319https://doi.org/10.1016/j.healun.2019.09.006
        • Grant C
        • Richards JB
        • Frakes M
        • Cohen J
        • Wilcox SR.
        ECMO and right ventricular failure: review of the literature.
        J Intensive Care Med. 2021; 36: 352-360https://doi.org/10.1177/0885066619900503
        • Schmid C
        • Philipp A
        • Hilker M
        • et al.
        Bridge to lung transplantation through a pulmonary artery to left atrial oxygenator circuit.
        Ann Thorac Surg. 2008; 85: 1202-1205https://doi.org/10.1016/j.athoracsur.2007.12.032
        • Hoetzenecker K
        • Donahoe L
        • Yeung JC
        • et al.
        Extracorporeal life support as a bridge to lung transplantation–experience of a high-volume transplant center.
        J Thorac Cardiovasc Surg. 2018; 155 (e1): 1316-1328https://doi.org/10.1016/j.jtcvs.2017.09.161
        • Benazzo A
        • Schwarz S
        • Frommlet F
        • et al.
        Twenty-year experience with extracorporeal life support as bridge to lung transplantation.
        J Thorac Cardiovasc Surg. 2019; 157 (e10): 2515-2525https://doi.org/10.1016/j.jtcvs.2019.02.048
        • Mayes J
        • Niranjan G
        • Dark J
        • Clark S.
        Bridging to lung transplantation for severe pulmonary hypertension using dual central Novalung lung assist devices†.
        Interact Cardiovasc Thorac Surg. 2016; 22: 677-678https://doi.org/10.1093/icvts/ivv393
        • Schewe RE
        • Scipione CN
        • Koch KL
        • Cook KE.
        In-parallel attachment of a low-resistance compliant thoracic artificial lung under rest and simulated exercise.
        Ann Thorac Surg. 2012; 94: 1688-1694https://doi.org/10.1016/j.athoracsur.2012.07.034
        • Skoog DJ
        • Pohlmann JR
        • Demos DS
        • et al.
        Fourteen day in vivo testing of a compliant thoracic artificial lung.
        ASAIO J. 2017; 63: 644-649https://doi.org/10.1097/MAT.0000000000000627
        • Akay B
        • Reoma JL
        • Camboni D
        • et al.
        In-parallel artificial lung attachment at high flows in normal and pulmonary hypertension models.
        Ann Thorac Surg. 2010; 90: 259-265https://doi.org/10.1016/j.athoracsur.2010.03.085
        • Ravichandran AK
        • Baran DA
        • Stelling K
        • Cowger JA
        • Salerno CT.
        Outcomes with the tandem protek duo dual-lumen percutaneous right ventricular assist device.
        ASAIO J. 2018; 64: 570-572https://doi.org/10.1097/MAT.0000000000000709
        • Lepper PM
        • Hörsch SI
        • Seiler F
        • et al.
        Percutaneous mechanical circulation support combined with extracorporeal membrane oxygenation (oxyrvad) in secondary right heart failure.
        ASAIO J. 2018; 64: e64-e67https://doi.org/10.1097/MAT.0000000000000754
        • Wang D
        • Lick SD
        • Zhou X
        • Liu X
        • Benkowski RJ
        • Zwischenberger JB.
        Ambulatory oxygenator right ventricular assist device for total right heart and respiratory support.
        Ann Thorac Surg. 2007; 84: 1699-1703https://doi.org/10.1016/j.athoracsur.2007.03.068
        • Gregoric ID
        • Chandra D
        • Myers TJ
        • Scheinin SA
        • Loyalka P
        • Kar B.
        Extracorporeal membrane oxygenation as a bridge to emergency heart-lung transplantation in a patient with idiopathic pulmonary arterial hypertension.
        J Heart Lung Transplant. 2008; 27: 466-468https://doi.org/10.1016/j.healun.2008.01.016
        • Keogh AM
        • Mayer E
        • Benza RL
        • et al.
        Interventional and surgical modalities of treatment in pulmonary hypertension.
        J Am Coll Cardiol. 2009; 54: S67-S77https://doi.org/10.1016/j.jacc.2009.04.016
        • Verbelen T
        • Claus P
        • Burkhoff D
        • et al.
        Low-flow support of the chronic pressure–overloaded right ventricle induces reversed remodeling.
        J Heart Lung Transplant. 2018; 37: 151-160https://doi.org/10.1016/j.healun.2017.09.014
        • Javidfar J.
        The Challenges faced with early mobilization of patients on extracorporeal membrane oxygenation*.
        Crit Care Med. 2018; 46: 161-163https://doi.org/10.1097/CCM.0000000000002822
        • Ganushchak Y
        • van Marken Lichtenbelt W
        • van der Nagel T
        • de Jong DS.
        Hydrodynamic performance and heat generation by centrifugal pumps.
        Perfusion. 2006; 21: 373-379https://doi.org/10.1177/0267659106074003
        • Moazami N
        • Fukamachi K
        • Kobayashi M
        • et al.
        Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice.
        J Heart Lung Transplant. 2013; 32: 1-11https://doi.org/10.1016/j.healun.2012.10.001
      1. Quadrox-i Oxygenators. Accessed September 26, 2022. https://www.getinge.com/int/products/quadrox-i-oxygenators/

        • King J
        • Lowery DR.
        Physiology, cardiac output.
        StatPearls. StatPearls Publishing, 2022 (Accessed September 26, 2022)