BACKGROUND
METHODS
RESULTS
CONCLUSIONS
KEYWORDS
Abbreviations:
COVID-19 (coronavirus disease 2019), CRP (C-reactive protein), eGFR (estimated glomerular filtration rate), ELISA (enzyme-linked immunosorbent assay), GMT (geometric mean titer), HT (heart transplantation), IFN-γ (interferon gamma), ISHLT (International Society for Heart and Lung Transplantation), PBMCs (peripheral blood mononuclear,r cells), RBD (receptor-binding domain), SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), SOT (solid organ transplants)- Peled Y
- Ram E
- Lavee J
- et al.
- Aslam S
- Danziger-Isakov L
- Mehra MR
- Wadei HM
- Gonwa TA
- Leoni JC
- et al.
- Minervina AA
- Pogorelyy MV
- Kirk AM
- et al.
- Aslam S
- Danziger-Isakov L
- Mehra MR
- Werbel WA
- Boyarsky BJ
- Ou MT
- et al.
- Benotmane I
- Gautier G
- Perrin P
- et al.
- Hall VG
- Ferreira VH
- Ku T
- et al.
Methods
Study population and surveillance
- Danziger-Isakov L
- Kumar D
Vaccination of solid organ transplant candidates and recipients: guidelines from the American Society of Transplantation Infectious Diseases community of practice.
- Khoury DS
- Cromer D
- Reynaldi A
- et al.
- Khoury DS
- Cromer D
- Reynaldi A
- et al.
Outcome measures
Tolerability and reactogenicity
Antibody detection testing
Peripheral blood mononuclear cells
IFN-γ ELISpot assay
Statistical analysis
Results
Study population
Variable | Total cohort n = 96 | Positive antibody response n = 64 | Negative antibody response n = 32 | p value |
---|---|---|---|---|
Recipient characteristics | ||||
Age, years, median (IQR) | 61.0 [49.8, 68.0] | 58.0 [47.0, 68.0] | 65.00 [58.8, 70.3] | 0.012 |
Female sex, n (%) | 28.0 (29.2) | 15.0 (23.4) | 13.0 (40.6) | 0.131 |
BMI, kg/m2 (mean ± SD) | 26.8 (4.7) | 26.9 (4.0) | 26.8 (5.9) | 0.918 |
Diabetes mellitus, n (%) | 42.0 (43.8) | 26.0 (40.6) | 16.0 (51.6) | 0.429 |
Hypertension, n (%) | 70.0 (72.9) | 42.0 (65.6) | 28.0 (87.5) | 0.042 |
Cardiac allograft vasculopathy, n (%) | 22.0 (22.9) | 15.0 (24.2) | 7.0 (22.6) | 1.000 |
Immunosuppression data | ||||
Mycophenolic acid therapy, n (%) | 75.0 (78.1) | 47.0 (73.4) | 28.0 (87.5) | 0.144 |
Mycophenolate sodium, n (%) | 52.0 (54.2) | 30.0 (46.9) | 22.0 (68.8) | 0.070 |
Mycophenolate mofetil, n (%) | 23.0 (24.0) | 17.0 (26.6) | 6.0 (18.8) | 0.554 |
Mycophenolate sodium dose, mg (mean ± SD) | 1147.3 (378.1) | 1160.67 (398.7) | 1129.09 (356.5) | 0.769 |
Mycophenolate mofetil dose, mg (mean ± SD) | 1347.8 (487.0) | 1352.9 (492.6) | 1333.3 (516.4) | 0.935 |
Everolimus therapy, n (%) | 21.0 (22.1) | 18.0 (28.6) | 3.0 (9.4) | 0.062 |
Immunosuppression protocol | 0.660 | |||
Tacrolimus + mycophenolate + prednisone, n (%) | 51.0 (53.1) | 33.0 (51.6) | 18.0 (56.2) | |
Cyclosporine + mycophenolate + prednisone n (%) | 7.0 (7.3) | 4.0 (6.2) | 3.0 (9.4) | |
Tacrolimus + mycophenolate, n (%) | 13.0 (13.5) | 7.0 (10.9) | 6.0 (18.8) | |
Cyclosporine + mycophenolate, n (%) | 1.0 (1.0) | 1.0 (1.6) | 0.0 (0.0) | |
Cyclosporine + everolimus + prednisone, n (%) | 2.0 (2.1) | 2.0 (3.1) | 0.0 (0.0) | |
Tacrolimus + everolimus + prednisone, n (%) | 12.0 (12.5) | 10.0 (15.6) | 2.0 (6.2) | |
Mycophenolate + everolimus + prednisone, n (%) | 3.0 (3.1) | 2.0 (3.1) | 1.0 (3.1) | |
Everolimus + cyclosporine, n (%) | 2.0 (2.1) | 2.0 (3.1) | 0.0 (0.0) | |
Everolimus + tacrolimus, n (%) | 1.0 (1.0) | 1.0 (1.6) | 0.0 (0.0) | |
Cyclosporine + prednisone, n (%) | 1.0 (1.0) | 0.0 (0.0) | 1.0 (3.1) | |
Tacrolimus + prednisone, n (%) | 2.0 (2.1) | 1.0 (1.6) | 1.0 (3.1) | |
Tacrolimus + everolimus + mycophenolate + prednisone, n (%) | 1.0 (1.0) | 1.0 (1.6) | 0.0 (0.0) | |
Chronic prednisone, n (%) | 77.0 (80.2) | 52.0 (81.2) | 25.0 (78.1) | 0.928 |
Prednisone dose, mg, median (IQR) | 2.5 [2.0, 2.5] | 2.5 [2.0, 2.5] | 2.5 [2.5, 3.0] | 0.139 |
Tacrolimus trough level, μg/L, median (IQR) | 9.8 [6.9, 12.0] | 9.5 [6.1, 11.1] | 10.6 [8.9, 13.1] | 0.033 |
Cyclosporine trough level, μg/L, median (IQR) | 128.0 [107.0, 138.0] | 132.0 [101.0, 138.0] | 118.0 [113.0, 143.0] | 0.796 |
Laboratory data | ||||
Lymphocyte absolute, K/μL, n (%) | 1.5 (0.7) | 1.6 (0.6) | 1.4 (0.7) | 0.292 |
White blood cell, K/μL, n (%) | 7.0 (2.5) | 7.2 (2.2) | 6.6 (2.9) | 0.305 |
Neutrophil absolute, K/μL, n (%) | 5.0 (2.0) | 5.1 (1.9) | 4.8 (2.2) | 0.535 |
Neutrophil/lymphocyte ratio, n (%) | 3.8 (1.9) | 3.8 (1.9) | 3.9 (2.0) | 0.778 |
Estimated glomerular filtration rate, mL/min/1.73 m2 | 77.8 (33.0) | 85.8 (34.7) | 62.0 (21.4) | 0.001 |
C-reactive protein, mg/L (mean ± SD) | 6.3 (8.1) | 5.2 (5.9) | 8.7 (11.0) | 0.043 |
Low-density lipoprotein, mg/dL (mean ± SD) | 79.7 (34.7) | 81.9 (36.0) | 75.6 (32.5) | 0.445 |
Triglycerides, mg/dL(mean ± SD) | 164.8 (81.2) | 160.1 (83.1) | 170.6 (78.5) | 0.583 |
Troponin I HS, baseline, ng/L, median (IQR) | 4.1 [3.0, 6.7] | 4.0 [3.1, 6.9] | 4.2 [2.9, 6.5] | 0.759 |
Troponin I HS, post third vaccine, ng/L, median (IQR) | 3.9 [2.6, 5.5] | 3.5 [2.4, 5.1] | 4.3 [3.2, 7.6] | 0.161 |
∆ troponin, ng/L, median (IQR) | -0.5 [-1.5, 0.2] | -0.6 [-1.6, 0.0] | -0.3 [-0.9, 0.9] | 0.141 |
CPK baseline, ng/L, median (IQR) | 88.0 [62.0, 133.0] | 101.5 [74.0, 133.0] | 68.0 [46.0, 92.5] | 0.005 |
CPK post 3rd vaccine dose, ng/L, median (IQR) | 77.0 [54.3, 130.3] | 88.0 [61.8, 131.5] | 59.5 [44.0, 98.5] | 0.043 |
∆ CPK, ng/L, median (IQR) | -6.0 [-21.0, 5.0] | -9.0 [-22.8, 3.8] | -1.0 [-10.5, 9.0] | 0.093 |
Timetable | ||||
HT to 1st vaccine, years, median (IQR) | 5.9 [2.9, 13.1] | 5.6 [3.3, 10.8] | 8.0 [2.5, 14.7] | 0.655 |
Time of 2nd vaccine from 1st vaccine, days (mean ± SD) | 21.3 (3.1) | 21.4 (3.7) | 21.0 (1.5) | 0.518 |
Time of 3rd vaccine from 2nd vaccine, days (mean ± SD) | 167.5 (18.0) | 163.9 (20.1) | 174.7 (9.6) | 0.005 |
Time of 3rd vaccine to antibody testing, days (mean ± SD) | 17.5 (3.9) | 17.5 (4.3) | 17.6 (3.0) | 0.868 |
Follow-up from 3rd vaccine, days (mean±SD) | 32.3 (2.4) | 32.5 (2.5) | 32.1 (2.3) | 0.494 |
Tolerability and reactogenicity
Reaction | Total cohort n = 96 | Age <55 years n = 33 | Age ≥ 55 years n = 63 | p value |
---|---|---|---|---|
Local reactions | ||||
Any local reaction, n (%) | 57.0 (60.0) | 22.0 (66.7) | 35.0 (56.5) | 0.455 |
Pain at the injection site, n (%) | ||||
Mild | 57.0 (60.0) | 22.0 (66.7) | 35.0 (56.5) | 0.455 |
Redness, n (%) | ||||
Mild | 1.0 (1.1) | 0 (0.0) | 1.0 (1.6) | 1.000 |
Swelling, n (%) | ||||
Mild | 1.0 (1.1) | 0 (0.0) | 1.0 (1.6) | 1.000 |
Systemic reactions | ||||
Any systemic reaction | 19.0 (20.0) | 13.0 (39.4) | 6.0 (9.7) | 0.001 |
Fever, n (%) | ||||
Any | 3.0 (3.2) | 0.0 (0.0) | 1.0 (1.6) | 0.573 |
Fatigue, n (%) | ||||
Mild | 16.0 (16.8) | 11.0 (33.3) | 5.0 (8.1) | 0.004 |
Headache, n (%) | ||||
Mild | 8.0 (8.4) | 6.0 (18.2) | 2.0 (3.2) | 0.035 |
Chills, n (%) | ||||
Moderate | 1 (1.1) | 0 (0.0) | 1 (1.6) | 1.000 |
Vomiting, n (%) | ||||
Mild | 1 (1.1) | 0 (0.0) | 1 (1.6) | 1.000 |
Diarrhea, n (%) | None | |||
New or worsening muscle or joint pain, n (%) | ||||
Mild | 6 (6.3) | 5 (15.2) | 1 (1.6) | 0.032 |
Use of antipyretic or pain medication, n (%) | 1 (1.1) | 0 (0.0) | 1 (1.6) | 1.000 |
Immunogenicity of the third dose of BNT162b2 vaccine
Antibody response


T-cell response

Discussion
- Werbel WA
- Boyarsky BJ
- Ou MT
- et al.
- Werbel WA
- Boyarsky BJ
- Ou MT
- et al.
- Khoury DS
- Cromer D
- Reynaldi A
- et al.
- Dispinseri S
- Secchi M
- Pirillo MF
- et al.
- Hall VG
- Ferreira VH
- Ku T
- et al.
- Yang S
- Li Y
- Dai L
- Wang J
- et al.
Flaxman A, Marchevsky Jenkin D, et al. The Oxford COVID vaccine, tolerability and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 (AZD1222). Accessed September 16, 2021. https://ssrn.com/abstract=3873839
- Petrone L
- Petruccioli E
- Vanini V
- et al.
Mateus J, Dan JM, Zhang Z, et al. Low dose mRNA-1273 COVID-19 vaccine generates durable T cell memory and antibodies enhanced by pre-existing crossreactive T cell memory. medRxiv 2021.06.30.21259787; https://doi.org/10.1101/2021.06.30.21259787
- Edara VV
- Pinsky BA
- Suthar MS
- et al.
- Peled Y
- Ram E
- Lavee J
- et al.
- Aslam S
- Danziger-Isakov L
- Mehra MR
- Aslam S
- Danziger-Isakov L
- Mehra MR
- Aslam S
- Danziger-Isakov L
- Mehra MR
- Verschoor CP
- Lelic A
- Parsons R
- et al.
- Khoury DS
- Cromer D
- Reynaldi A
- et al.
- Havlin J
- Svorcova M
- Dvorackova E
- et al.
- Palgen JL
- Feraoun Y
- Dzangué-Tchoupou G
- et al.
Flaxman A, Marchevsky Jenkin D, et al. The Oxford COVID vaccine, tolerability and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 (AZD1222). Accessed September 16, 2021. https://ssrn.com/abstract=3873839
Disclosure statement
Acknowledgment
References
- mRNA-1273 Study Group. An mRNA vaccine against SARS-CoV-2—preliminary report.N Engl J Med. 2020; 383 ([PMID:32663912]): 1920-1931https://doi.org/10.1056/NEJMoa2022483
- BNT162b2 vaccination in heart transplant recipients: clinical experience and antibody response.J Heart Lung Transplant. 2021; 40 (Epub 2021 Apr 21. PMID:34034958; PMCID: PMC8058049): 759-762https://doi.org/10.1016/j.healun.2021.04.003
- COVID-19 vaccination immune paresis in heart and lung transplantation.J Heart Lung Transplant. 2021; 40 (Epub 2021 May 13. PMID:34144891; PMCID: PMC8116313): 763-766https://doi.org/10.1016/j.healun.2021.04.018
- Development of COVID-19 infection in transplant recipients after SARS-CoV-2 vaccination.Transplantation. 2021; 105 ([PMID:34049360]): e104-e106
- COVID-19 infection in solid organ transplant recipients after SARS-CoV-2 vaccination.Am J Transplant. Published online April 23, 2021; (10.1111/ajt.16618Epub ahead of print. PMID:33890410; PMCID: PMC8251487)https://doi.org/10.1111/ajt.16618
- Convergent epitope-specific T cell responses after SARS-CoV-2 infection and vaccination.posted medRxiv. 2021; https://doi.org/10.1101/2021.07.12.2126022.7
- Three doses of an mRNA Covid-19 Vaccine in solid-organ transplant recipients.N Engl J Med. 2021; 385 (Online ahead of print): 661-662
- Safety and immunogenicity of a third dose of SARS-CoV-2 vaccine in solid organ transplant recipients: a case series.Ann Intern Med. Published online June 15, 2021; https://doi.org/10.7326/L21-0282
- Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses.JAMA. Published online July 23, 2021; (Published online July 23)https://doi.org/10.1001/jama.2021.12339
- Randomized trial of a third dose of mRNA-1273 vaccine in transplant recipients.N Engl J Med. Published online August 11, 2021; (Epub ahead of print. PMID:34379917)https://doi.org/10.1056/NEJMc2111462
Available at SSRN: https://ishlt.org/ishlt/media/documents/ISHLT-AST_SARS-CoV-2-Vaccination_7-16-21.pdf
- Vaccination of solid organ transplant candidates and recipients: guidelines from the American Society of Transplantation Infectious Diseases community of practice.Clin Transplant. 2019; 33 (Epub 2019 Jun 5. Erratum in: Clin Transplant. 2020 Mar;34(3):e13806. PMID:31002409): e13563https://doi.org/10.1111/ctr.13563
- Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection.Nat Med. 2021; 27 (Epub 2021 May 17. PMID:34002089): 1205-1211https://doi.org/10.1038/s41591-021-01377-8
- Metformin therapy reduces the risk of malignancy after heart transplantation.J Heart Lung Transplant. 2017; 36: 1350-1357
Available at SSRN:https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine.
- Multi-center nationwide comparison of seven serology assays reveals a SARS-CoV-2 non-responding seronegative subpopulation.EClinicalMedicine. 2020; 29100651
- Testing IgG antibodies against the RBD of SARS-CoV-2 is sufficient and necessary for COVID-19 diagnosis.PLoS One. 2020; 15e0241164
- A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition.Cell Host Microbe. 2020; 28 (486-496.e6)
- Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival.Nat Commun. 2021; 12 (PMID:33976165; PMCID: PMC8113594.s): 2670https://doi.org/10.1038/s41467-021-22958-8
- Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials.Lancet Infect Dis. 2021; 21 (Mar 24Epub ahead of print. PMID:33773111; PMCID: PMC7990482): 1107-1119https://doi.org/10.1016/S1473-3099(21)00127-4
Flaxman A, Marchevsky Jenkin D, et al. The Oxford COVID vaccine, tolerability and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 (AZD1222). Accessed September 16, 2021. https://ssrn.com/abstract=3873839
- Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19.Cell. 2020; 183 (Oct 1158-168.e14Epub 2020 Aug 14. PMID:32979941; PMCID: PMC7427556): 158-168
- Vaccine induced immunologic memory for hepatitis B surface antigen: implications for policy on booster vaccination.Vaccine. 1996; 14 (1019-27)
- Distinct short-lived and long-lived antibody-producing cell populations.Eur J Immunol. 1986; 16: 1297-1301
- Maintenance of B-cell memory by long-lived cells generated from proliferating precursors.Nature. 1990; 346: 749-751
- Booster vaccination with recombinant hepatitis B vaccine four years after priming with one single dose.Vaccine. 1999; 17 (PMID:10367949): 2162-2165https://doi.org/10.1016/s0264-410x(99)00012-2
- A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients.Clin Microbiol Infect. 2021; 27 (Epub 2020 Oct 10. PMID:33045370; PMCID: PMC7547312): 286.e7-286.e13https://doi.org/10.1016/j.cmi.2020.09.051
Mateus J, Dan JM, Zhang Z, et al. Low dose mRNA-1273 COVID-19 vaccine generates durable T cell memory and antibodies enhanced by pre-existing crossreactive T cell memory. medRxiv 2021.06.30.21259787; https://doi.org/10.1101/2021.06.30.21259787
- Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant.N Engl J Med. 2021; 385 (Epub ahead of print. PMID:34289274): 585-594
- Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants.N Engl J Med. 2021; 385 (Epub 2021 Jul 7. PMID:34233096; PMCID: PMC8279090): 664-666https://doi.org/10.1056/NEJMc2107799
- Serum C-reactive protein and congestive heart failure as significant predictors of herpes zoster vaccine response in elderly nursing home residents.J Infect Dis. 2017; 216 (PMID:28838148; PMCID: PMC5853411): 191-197https://doi.org/10.1093/infdis/jix257
- Immunogenicity of BNT162b2 mRNA COVID-19 vaccine and SARS-CoV-2 infection in lung transplant recipients.J Heart Lung Transplant. 2021; 40 (Epub 2021 May 21. PMID:34120839; PMCID: PMC8139179): 754-758https://doi.org/10.1016/j.healun.2021.05.004
- Optimize prime/boost vaccine strategies: Trained immunity as a new player in the game.Front Immunol. 2021; 12 (PMID:33763063; PMCID: PMC7982481)554:612747https://doi.org/10.3389/fimmu.2021.612747
- Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination.N Engl J Med. 2021; 385 (Epub ahead of print. PMID:34260850): 1049-1051
- Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination.Nat Med. 2021; 27 (Epub ahead of print. PMID:34312554): 1530-1535
- Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine.Emerg Microbes Infect. 2021; 10 (Epub ahead of print. PMID:34278956): 1598-1608