Advertisement
The Journal of Heart and Lung Transplantation
International Society for Heart and Lung Transplantation.

Report from the 2018 consensus conference on immunomodulating agents in thoracic transplantation: Access, formulations, generics, therapeutic drug monitoring, and special populations

      In 2009, the International Society for Heart and Lung Transplantation recognized the importance and challenges surrounding generic drug immunosuppression. As experience with generics has expanded and comfort has increased, substantial issues have arisen since that time with other aspects of immunomodulation that have not been addressed, such as access to medicines, alternative immunosuppression formulations, additional generics, implications on therapeutic drug monitoring, and implications for special populations such as pediatrics and older adults. The aim of this consensus document is to address critically each of these concerns, expand on the challenges and barriers, and provide therapeutic considerations for practitioners who manage patients who need to undergo or have undergone cardiothoracic transplantation.

      KEYWORDS

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Heart and Lung Transplantation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Uber PA
        • Ross HJ
        • Zuckermann AO
        • et al.
        Generic drug immunosuppression in thoracic transplantation: an ISHLT educational advisory.
        J Heart Lung Transplant. 2009; 28: 655-660
        • O'Connell PJ
        • Kuypers DR
        • Mannon RB
        • et al.
        Clinical trials for immunosuppression in transplantation: the case for reform and change in direction.
        Transplantation. 2017; 101: 1527-1534
        • Stegall MD
        • Morris RE
        • Alloway RR
        • Mannon RB
        Developing new immunosuppression for the next generation of transplant recipients: the path forward.
        Am J Transplant. 2016; 16: 1094-1101
      1. Lemtrada [package insert].
        Genzyme Corporation, Cambridge, MA2017
      2. Neoral [package insert].
        Novartis Pharmaceuticals Corporation, East Hanover, NJ2015
      3. Sandimmune [package insert].
        Novartis Pharmaceuticals Corporation, East Hanover, NJ2015
      4. Prograf [package insert].
        Astellas Pharma US, Inc, Deerfield, IL2012
      5. Myfortic [package insert].
        Novartis Pharmaceuticals Corporation, East Hanover, NJ2016
      6. CellCept [package insert].
        Genentech, Inc, South San Francisco, CA2015
      7. Rapamune [package insert].
        Pfizer Inc, Philadelphia, PA2018
      8. Zortress [Package insert].
        Novartis Pharmaceuticals Corporation, East Hanover, NJ2018
        • Aliabadi A
        • Grömmer M
        • Cochrane A
        • Salameh O
        • Zuckermann A
        Induction therapy in heart transplantation: where are we now?.
        Transpl Int. 2013; 26: 684-695
      9. Simulect [package insert].
        Novartis Pharmaceuticals Corporation, East Hanover, NJ2005
      10. Thymoglobulin [package insert].
        Genzyme Corporation, Cambridge, MA2017
      11. Campath [package insert].
        Genzyme Corporation, Cambridge, MA2014
        • Kobashigawa J
        • Crespo-Leiro MG
        • Ensminger SM
        • et al.
        Report from a consensus conference on antibody-mediated rejection in heart transplantation.
        J Heart Lung Transplant. 2011; 30: 252-269
        • Chih S
        • Patel J.
        Desensitization strategies in adult heart transplantation-will persistence pay off?.
        J Heart Lung Transplant. 2016; 35: 962-972
        • Levine DJ
        • Glanville AR
        • Aboyoun C
        • et al.
        Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation.
        J Heart Lung Transplant. 2016; 35: 397-406
      12. Gengraf (cyclosporine) [package insert].
        AbbVie Inc, North Chicago, IL2017
        • Wohlt PD
        • Zheng L
        • Gunderson S
        • Balzar SA
        • Johnson BD
        • Fish JT
        Recommendations for the use of medications with continuous enteral nutrition.
        Am J Health Syst Pharm. 2009; 66: 1458-1467
        • Envarsus XR
        [package insert].
        Veloxis Pharmaceuticals, Inc, Edison, NJ2016
        • Elefante A
        • Muindi J
        • West K
        • et al.
        Long-term stability of a patient-convenient 1 mg/ml suspension of tacrolimus for accurate maintenance of stable therapeutic levels.
        Bone Marrow Transplant. 2006; 37: 781-784
        • Alloway R
        • Vanhaecke J
        • Yonan N
        • et al.
        Pharmacokinetics in stable heart transplant recipients after conversion from twice-daily to once-daily tacrolimus formulations.
        J Heart Lung Transplant. 2011; 30: 1003-1010
        • Murray M
        • Grogan TA
        • Lever J
        • Warty VS
        • Fung J
        • Venkataramanan R
        Comparison of tacrolimus absorption in transplant patients receiving continuous versus interrupted enteral nutrition feeding.
        Ann Pharmacother. 1998; 32: 633-636
        • Doligalski CT
        • Liu EC
        • Sammons CM
        • Silverman A
        • Logan AT
        Sublingual administration of tacrolimus: current trends and available evidence.
        Pharmacotherapy. 2014; 34: 1209-1219
        • Rupprecht K
        • Schmidt C
        • Raspé A
        • et al.
        Bioavailability of mycophenolate mofetil and enteric-Coatedcoated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers.
        J Clin Pharmacol. 2009; 49: 1196-1201
        • Rissling O
        • Glander P
        • Hambach P
        • et al.
        No relevant pharmacokinetic interaction between pantoprazole and mycophenolate in renal transplant patients: a randomized crossover study.
        Br J Clin Pharmacol. 2015; 80: 1086-1096
      13. Imuran [package insert].
        Prometheus Laboratories Inc, Hunt Valley, MD2011
        • Dressman JB
        • Poust RI.
        Stability of allopurinol and of five antineoplastics in suspension.
        Am J Hosp Pharm. 1983; 40: 616-618
        • Chambers DC
        • Yusen RD
        • Cherikh WS
        • et al.
        The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation report-2017; focus theme: allograft ischemic time.
        J Heart Lung Transplant. 2017; 36: 1047-1059
        • Abu-Elmagd KM
        • Fung J
        • Draviam R
        • et al.
        Four-hour versus 24-hour intravenous infusion of FK 506 in liver transplantation.
        Transplant Proc. 1991; 23: 2767-2770
        • Taormina D
        • Abdallah HY
        • Venkataramanan R
        • et al.
        Stability and sorption of FK 506 in 5% dextrose injection and 0.9% sodium chloride injection in glass, polyvinyl chloride, and polyolefin containers.
        Am J Hosp Pharm. 1992; 49: 119-122
        • Jacobson PA
        • Johnson CE
        • West NJ
        • Foster JA
        Stability of tacrolimus in an extemporaneously compounded oral liquid.
        Am J Health Syst Pharm. 1997; 54: 178-180
        • Pennington CA
        • Park JM.
        Sublingual tacrolimus as an alternative to oral administration for solid organ transplant recipients.
        Am J Health Syst Pharm. 2015; 72: 277-284
      14. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health>NIOSH Alert: preventing occupational exposure to antineoplastic and other hazardous drugs in health care settings. Available at: https://www.cdc.gov/niosh/docs/2004-165/pdfs/2004-165.pdf?id=10.26616/NIOSHPUB2004165.

        • Astagraf XL
        [package insert].
        Astellas Pharma US, Inc, Northbrook, IL2015
        • Méndez A
        • Berastegui C
        • López-Meseguer M
        • et al.
        Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation.
        Transplantation. 2014; 97: 358-362
        • Fahr A
        Cyclosporin clinical pharmacokinetics.
        Clin Pharmacokinet. 1993; 24: 472-495
        • Friman S
        • Bäckman L.
        A new microemulsion formulation of cyclosporin: pharmacokinetic and clinical features.
        Clin Pharmacokinet. 1996; 30: 181-193
        • Aspeslet LJ
        • LeGatt DF
        • Murphy G
        • Yatscoff RW
        Effect of assay methodology on pharmacokinetic differences between cyclosporine Neoral and Sandimmune formulations.
        Clin Chem. 1997; 43: 104-108
        • De Palma MT
        • Giordano M
        • Colella V
        • Palumbo F
        • DeNicolo VE
        • Caringella DA
        Sandimmun and Neoral treatment: pharmacokinetics and kidney function in paediatric and adolescent renal transplant.
        Transplant Proc. 1998; 30: 1677
        • Lemire J
        • Capparelli E
        • Benedor N
        • MacDonald D
        • Reznik V
        • Griswold W
        Comparison of Sandimmune and Neoral pharmacokinetics (PK) in a stable pediatric renal transplant population.
        Pediatr Transplant. 1998; 2: 12-30
        • Melter M
        • Rodeck B
        • Kardorff R
        • Hoyer PF
        • Brodehl J
        Pharmacokinetics of cyclosporine in pediatric long-term liver transplant recipients converted from Sandimmune to Neoral.
        Transpl Int. 1997; 10: 419-425
        • Melter M
        • Rodeck B
        • Kardorff R
        • Hoyer PF
        • Maibücher A
        • Brodehl J
        Successful reconversion from tacrolimus to cyclosporine A Neoral in pediatric liver recipients.
        Transplant Proc. 1996; 28: 2276-2278
        • Milanian I
        • Ghods AJ
        • Mahmoudian M
        • et al.
        Study of the circadian variation of cyclosporine pharmacokinetics.
        Transplant Proc. 1997; 29: 2930-2931
        • Serafinowicz A
        • Gaciong Z
        • Baçzkowska T
        • Durlik M
        • Lao M
        Cyclosporine pharmacokinetics in renal allograft recipients with diabetes mellitus with Sandimmune and Sandimmune Neoral.
        Transplant Proc. 1996; 28: 3140-3141
        • Sketris IS
        • Lawen JG
        • Beauregard-Zollinger L
        • et al.
        Comparison of the pharmacokinetics of cyclosporine Sandimmune with Sandimmune Neoral in stable renal transplant patients.
        Transplant Proc. 1994; 26: 2961-2963
        • Takahara S
        • Ohta K
        • Ohashi Y
        • et al.
        Comparative pharmacokinetic study of Neoral vs Sandimmun in Japanese stable renal allograft recipients.
        Transplant Proc. 1999; 31: 3089-3092
        • Trull A
        • Steel L
        • Sharples L
        • et al.
        Randomized, trough blood cyclosporine concentration-controlled trial to compare the pharmacodynamics of Sandimmune and Neoral in de novo lung transplant recipients.
        Ther Drug Monit. 1999; 21: 17-26
        • Tsang WK
        • Ho YW
        • Tong KL
        • Chan WH
        • Chan A
        Safety, tolerability, and pharmacokinetics of Sandimmun Neoral: conversion study in stable renal transplant recipients.
        Transplant Proc. 1996; 28: 1330-1332
        • Vathsala A
        • Lee WT
        • Jacob E
        • Woo KT
        Cyclosporine pharmacokinetic profiles in stable renal allograft recipients converting from Sandimmune to Neoral.
        Transplant Proc. 1996; 28: 1324-1326
        • White M
        • Pelletier GB
        • Jesina C
        • Pasquette MS
        • Pellier LC
        • Carrier M
        Pharmacokinetic of Sandimmune versus Sandimmune Neoral in heart transplant recipients.
        Clin Invest Med. 1996; 19: S107
        • White M
        • Pelletier GB
        • Tan A
        • Jesina C
        • Carrier M
        Pharmacokinetic, hemodynamic, and metabolic effects of cyclosporine Sandimmune versus the microemulsion neoral in heart transplant recipients.
        J Heart Lung Transplant. 1997; 16: 787-794
        • Lin CY
        • Lee SF.
        Comparison of pharmacokinetics between CsA capsules and Sandimmun Neoral in pediatric patients.
        Transplant Proc. 1994; 26: 2973-2974
        • Colombo D
        • Egan CG.
        Bioavailability of Sandimmun® versus Sandimmune Neoral®: a meta-analysis of published studies.
        Int J Immunopathol Pharmacol. 2010; 23: 1177-1183
      15. U.S. Department of Health and Human Services, Food and Drug Administration, Centers for Drug Evaluation and Research (CDER)>Guidance for industry bioavailability and bioequivalence studies for orally administered drug products — general considerations. Available at: https://www.fda.gov/files/drugs/published/Guidance-for-Industry-Bioavailability-and-Bioequivalence-Studies-for-Orally-Administered-Drug-Products—General-Considerations.PDF.

        • Morais JA
        • Lobato Mdo R
        The new European Medicines Agency guideline on the investigation of bioequivalence.
        Basic Clin Pharmacol Toxicol. 2010; 106: 221-225
        • Lund LH
        • Khush KK
        • Cherikh WS
        • et al.
        The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time.
        J Heart Lung Transplant. 2017; 36: 1037-1046
        • Arns W
        • Breuer S
        • Choudhury S
        • et al.
        Enteric-coated mycophenolate sodium delivers bioequivalent MPA exposure compared with mycophenolate mofetil.
        Clin Transpl. 2005; 19: 199-206
        • Xu L
        • Cai M
        • Shi BY
        • Li ZL
        • Li X
        • Jin HL
        A prospective analysis of the effects of enteric-coated mycophenolate sodium and mycophenolate mofetil co-medicated with a proton pump inhibitor in kidney transplant recipients at a single institute in China.
        Transplant Proc. 2014; 46: 1362-1365
        • David-Neto E
        • Takaki KM
        • Agena F
        • et al.
        Diminished mycophenolic acid exposure caused by omeprazole may be clinically relevant in the first week post transplantation.
        Ther Drug Monit. 2012; 34: 331-336
        • Kiberd BA
        • Wrobel M
        • Dandavino R
        • Keown P
        • Gourishankar S
        The role of proton pump inhibitors on early mycophenolic acid exposure in kidney transplantation: evidence from the CLEAR study.
        Ther Drug Monit. 2011; 33: 120-123
        • Doesch AO
        • Mueller S
        • Konstandin M
        • et al.
        Proton pump inhibitor co-medication reduces active drug exposure in heart transplant recipients receiving mycophenolate mofetil.
        Transplant Proc. 2010; 42: 4243-4246
        • Schaier M
        • Scholl C
        • Scharpf D
        • et al.
        Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil.
        Rheumatology (Oxford). 2010; 49: 2061-2067
        • Kofler S
        • Shvets N
        • Bigdeli AK
        • et al.
        Proton pump inhibitors reduce mycophenolate exposure in heart transplant recipients-a prospective case-controlled study.
        Am J Transplant. 2009; 9: 1650-1656
        • Kofler S
        • Deutsch MA
        • Bigdeli AK
        • et al.
        Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients.
        J Heart Lung Transplant. 2009; 28: 605-611
        • Kees MG
        • Steinke T
        • Moritz S
        • et al.
        Omeprazole impairs the absorption of mycophenolate mofetil but not of enteric-coated mycophenolate sodium in healthy volunteers.
        J Clin Pharmacol. 2012; 52: 1265-1272
        • Kofler S
        • Wolf C
        • Shvets N
        • et al.
        The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients.
        J Heart Lung Transplant. 2011; 30: 565-571
        • van Boekel GA
        • Kerkhofs CH
        • van de Logt F
        • Hilbrands LB
        Proton pump inhibitors do not increase the risk of acute rejection.
        Neth J Med. 2014; 72: 86-90
        • Knorr JP
        • Sjeime M
        • Braitman LE
        • Jawa P
        • Zaki R
        • Ortiz J
        Concomitant proton pump inhibitors with mycophenolate mofetil and the risk of rejection in kidney transplant recipients.
        Transplantation. 2014; 97: 518-524
        • Patel KS
        • Stephany BR
        • Barnes JF
        • Bauer SR
        • Spinner ML
        Renal transplant acute rejection with lower mycophenolate mofetil dosing and proton pump inhibitors or Histamine-2 receptor antagonists.
        Pharmacotherapy. 2017; 37: 1507-1515
      16. Pediapred [package insert].
        Sanofi-Aventis Canada Inc, Laval, Quebec2017
        • Allen Jr, LV
        • Erickson 3rd, MA
        Stability of acetazolamide, allopurinol, azathioprine, clonazepam, and flucytosine in extemporaneously compounded oral liquids.
        Am J Health Syst Pharm. 1996; 53: 1944-1949
        • Drewe J
        • Beglinger C
        • Kissel T
        The absorption site of cyclosporin in the human gastrointestinal tract.
        Br J Clin Pharmacol. 1992; 33: 39-43
        • Lo A
        • Burckart GJ
        P-glycoprotein and drug therapy in organ transplantation.
        J Clin Pharmacol. 1999; 39: 995-1005
        • Shaw LM
        • Korecka M
        • Van Breeman R
        • Nowak I
        • Brayman KL
        Analysis, pharmacokinetics and therapeutic drug monitoring of mycophenolic acid.
        Clin Biochem. 1998; 31: 323-328
        • Al-Habet S
        • Rogers HJ.
        Pharmacokinetics of intravenous and oral prednisolone.
        Br J Clin Pharmacol. 1980; 10: 503-508
        • Tsunashima D
        • Kawamura A
        • Murakami M
        • et al.
        Assessment of tacrolimus absorption from the human intestinal tract: open-label, randomized, 4-way crossover study.
        Clin Ther. 2014; 36: 748-759
        • Gervasio JM
        • Brown RO
        • Lima J
        • et al.
        Sequential group trial to determine gastrointestinal site of absorption and systemic exposure of azathioprine.
        Dig Dis Sci. 2000; 45: 1601-1607
      17. Regulatory Focus>Brennan Z. Patents vs. Market Exclusivity: why does it take so long to being generics to the market? Available at:https://www.raps.org/regulatory-focus%E2%84%A2/news-articles/2016/8/patents-vs-market-exclusivity-why-does-it-take-so-long-to-bring-generics-to-market

        • Midha K
        • McKay G
        • Bialer M
        • et al.
        Narrow therapeutic index drugs: an approach to bioequivalence and interchangeability.
        in: Paper presented at: Meeting of the FDA Advisory Committee for Pharmaceutical Science and Clinical Pharmacology, Silver Spring, MDJuly 26, 2011
        • Kim SC
        • Han DJ.
        Neoplanta as a new microemulsion formula of cyclosporine in renal transplantation: comparative study with neoral for efficacy and safety.
        Transplant Proc. 1998; 30: 3547-3548
        • Stephan A
        • Masri MA
        • Barbari A
        • Aoun S
        • Rizk S
        • Kamel G
        A one-year comparative study of Neoral vs Consupren in de novo renal transplant patients.
        Transplant Proc. 1998; 30: 3533-3534
        • Roza A
        • Tomlanovich S
        • Merion R
        • et al.
        Conversion of stable renal allograft recipients to a bioequivalent cyclosporine formulation.
        Transplantation. 2002; 74: 1013-1017
        • Carnahan W
        • Cooper TY.
        Neoral-to-Gengraf conversion in renal transplant recipients.
        Transplant Proc. 2003; 35: 1308-1313
        • Taber DJ
        • Baillie GM
        • Ashcraft EE
        • et al.
        Does bioequivalence between modified cyclosporine formulations translate into equal outcomes?.
        Transplantation. 2005; 80: 1633-1635
        • Qazi YA
        • Forrest A
        • Tornatore K
        • Venuto RC
        The clinical impact of 1:1 conversion from Neoral to a generic cyclosporine (Gengraf) in renal transplant recipients with stable graft function.
        Clin Transpl. 2006; 20: 313-317
        • Sharma A
        • Shekhar C
        • Heer M
        • Minz M
        Comparison of generic cyclosporine microemulsion versus Neoral in de novo renal transplant recipients managed by 2-hour postdose monitoring.
        Transplant Proc. 2006; 38: 2051-2053
        • Sayyah M
        • Argani H
        • Pourmand GR
        • Amini H
        • Ahmadiani A
        Pharmacokinetics, efficacy, and safety of Iminoral compared with Neoral in healthy volunteers and renal transplant recipients.
        Transplant Proc. 2007; 39: 1214-1218
        • Spasovski G
        • Masin-Spasovska J
        • Ivanovski N
        Do we have the same clinical results with Neoral and Equoral treatment in kidney transplant recipients? A pilot study.
        Transpl Int. 2008; 21: 392-394
        • Vítko S
        • Ferkl M.
        Interchangeability of ciclosporin formulations in stable adult renal transplant recipients: comparison of Equoral and Neoral capsules in an international, multicenter, randomized, open-label trial.
        Kidney Int Suppl. 2010; (S12-6)
        • Pamugas GE
        • Danguilan RA
        • Lamban AB
        • Mangati VB
        • Ona ET
        Safety and efficacy of generic cyclosporine arpimune in Filipino low-risk primary kidney transplant recipients.
        Transplant Proc. 2012; 44: 101-108
        • Khatami SM
        • Taheri S
        • Azmandian J
        • et al.
        One-year multicenter double-blind randomized clinical trial on the efficacy and safety of generic cyclosporine (Iminoral) in de novo kidney transplant recipients.
        Exp Clin Transplant. 2015; 13: 233-238
        • Momper JD
        • Ridenour TA
        • Schonder KS
        • Shapiro R
        • Humar A
        • Venkataramanan R
        The impact of conversion from Prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function.
        Am J Transplant. 2011; 11: 1861-1867
        • McDevitt-Potter LM
        • Sadaka B
        • Tichy EM
        • Rogers CC
        • Gabardi S
        A multicenter experience with generic tacrolimus conversion.
        Transplantation. 2011; 92: 653-657
        • Min SI
        • Ha J
        • Kim YS
        • et al.
        Therapeutic equivalence and pharmacokinetics of generic tacrolimus formulation in de novo kidney transplant patients.
        Nephrol Dial Transplant. 2013; 28: 3110-3119
        • Heavner MS
        • Tichy EM
        • Yazdi M
        • Jr Formica RN
        • Kulkarni S
        • Emre S
        Clinical outcomes associated with conversion from brand-name to generic tacrolimus in hospitalized kidney transplant recipients.
        Am J Health Syst Pharm. 2013; 70: 1507-1512
        • Marfo K
        • Aitken S
        • Akalin E
        Clinical outcomes after conversion from brand-name tacrolimus (Prograf) to a generic formulation in renal transplant recipients: a retrospective cohort study.
        P T. 2013; 38: 484-488
        • Haroldson JA
        • Somerville KT
        • Carlson S
        • Hanson J
        • Emery RW
        • Lake KD
        A retrospective assessment of safety, efficacy, and pharmacoenconomics of generic azathioprine in heart-transplant recipients.
        J Heart Lung Transplant. 2001; 20: 372-374
        • Rutkowski B
        • Bzoma B
        • Dębska-Ślizień A
        • Chamienia A
        Immunosuppressive regimens containing generic mycophenolate mofetil (Myfenax) in de novo renal transplant recipients–preliminary results of 6-month observation.
        Ann Transplant. 2011; 16: 74-80
        • Danguilan RA
        • Lamban AB
        • Luna CA
        • Bacinillo M
        • Momongan MI
        Pilot study on the efficacy and safety of generic mycophenolate mofetil (Mycept) compared with CellCept among incident low-risk primary kidney transplant recipients.
        Transplant Proc. 2014; 46: 415-417
        • Spence MM
        • Nguyen LM
        • Hui RL
        • Chan J
        Evaluation of clinical and safety outcomes associated with conversion from brand-name to generic tacrolimus in transplant recipients enrolled in an integrated health care system.
        Pharmacotherapy. 2012; 32: 981-987
        • Söderlund C
        • Rådegran G.
        Safety and efficacy of the switch to generic mycophenolate mofetil and tacrolimus in heart transplant patients.
        Clin Transpl. 2015; 29: 619-628
        • Dhungel V
        • Colvin-Adams MM
        • Eckman PM
        Short-term outcomes in heart transplant recipients treated with generic tacrolimus.
        Open J Organ Transplant Surg. 2013; 3: 19-21
        • Wilson D
        • Johnston F
        • Holt D
        • et al.
        Multi-center evaluation of analytical performance of the microparticle enzyme immunoassay for sirolimus.
        Clin Biochem. 2006; 39: 378-386
        • Westley IS
        • Morris RG
        • Taylor PJ
        • Salm P
        • James MJ
        CEDIA sirolimus assay compared with HPLC-MS/MS and HPLC-UV in transplant recipient specimens.
        Ther Drug Monit. 2005; 27: 309-314
        • Dasgupta A
        • Johnson M.
        Positive bias in mycophenolic acid concentrations determined by the CEDIA assay compared to HPLC-UV method: is CEDIA assay suitable for therapeutic drug monitoring of mycophenolic acid?.
        J Clin Lab Anal. 2013; 27: 77-80
        • Holt DW
        • Lee T
        • Jones K
        • Johnston A
        Validation of an assay for routine monitoring of sirolimus using HPLC with mass spectrometric detection.
        Clin Chem. 2000; 46: 1179-1183
        • Schütz E
        • Svinarov D
        • Shipkova M
        al. Cyclosporin whole blood immunoassays (AxSYM, CEDIA, and EMIT): a critical overview of performance characteristics and comparison with HPLC.
        Clin Chem. 1998; 44: 2158-2164
        • Colantonio DA
        • Borden KK
        • Clarke W
        Comparison of the CEDIA and MEIA assays for the measurement of sirolimus in organ transplant recipients.
        Clin Biochem. 2007; 40: 680-687
        • Wallemacq P
        • Goffinet JS
        • O'Morchoe S
        al. Multi-site analytical evaluation of the Abbott ARCHITECT tacrolimus assay.
        Ther Drug Monit. 2009; 31: 198-204
        • Schmid RW
        • Lotz J
        • Schweigert R
        • et al.
        Multi-site analytical evaluation of a chemiluminescent magnetic microparticle immunoassay (CMIA) for sirolimus on the Abbott ARCHITECT analyzer.
        Clin Biochem. 2009; 42: 1543-1548
        • Strom T
        • Haschke M
        • Boyd J
        • et al.
        Crossreactivity of isolated everolimus metabolites with the Innofluor Certican immunoassay for therapeutic drug monitoring of everolimus.
        Ther Drug Monit. 2007; 29: 743-749
        • Dasgupta A.
        Limitations of immunoassays used for therapeutic drug monitoring of immunosuppressants.
        in: Oellerich M Dasgupta A Personalized immunosuppression in transplantation. Elselvier, The Netherlands2015: 29-51
        • Pohanka A
        • Rosenborg S
        • Lindh JD
        • Beck O
        Experiences from using LC-MS/MS for analysis of immunosuppressive drugs in a TDM service.
        Clin Biochem. 2016; 49: 1024-1031
        • Holt DW
        • Mandelbrot DA
        • Tortorici MA
        • et al.
        Long-term evaluation of analytical methods used in sirolimus therapeutic drug monitoring.
        Clin Transpl. 2014; 28: 243-251
        • Lee YW.
        Comparison between ultra-performance liquid chromatography with tandem mass spectrometry and a chemiluminescence immunoassay in the determination of cyclosporin A and tacrolimus levels in whole blood.
        Exp Ther Med. 2013; 6: 1535-1539
        • Zochowska D
        • Bartłomiejczyk I
        • Kamińska A
        • Senatorski G
        • Paczek L
        High-performance liquid chromatography versus immunoassay for the measurement of sirolimus: comparison of two methods.
        Transplant Proc. 2006; 38: 78-80
        • Hoffer E
        • Kurnik D
        • Efrati E
        • et al.
        Comparison of everolimus QMS immunoassay on Architect ci4100 and liquid chromatography/mass spectrometry: lack of agreement in organ-transplanted patients.
        Ther Drug Monit. 2015; 37: 214-219
        • Irtan S
        • Azougagh S
        • Monchaud C
        • Popon M
        • Baudouin V
        • Jacqz-Aigrain E
        Comparison of high-performance liquid chromatography and enzyme-multiplied immunoassay technique to monitor mycophenolic acid in paediatric renal recipients.
        Pediatr Nephrol. 2008; 23: 1859-1865
        • Jeong H
        • Kaplan B.
        Therapeutic monitoring of mycophenolate mofetil.
        Clin J Am Soc Nephrol. 2007; 2: 184-191
        • Ting LS
        • Partovi N
        • Levy RD
        • Riggs KW
        • Ensom MH
        Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and acyl glucuronide metabolites in stable thoracic transplant recipients.
        Ther Drug Monit. 2008; 30: 282-291
        • Iversen M
        • Nilsson F
        • Sipponen J
        • et al.
        Cyclosporine C2 levels have impact on incidence of rejection in de novo lung but not heart transplant recipients: the NOCTURNE study.
        J Heart Lung Transplant. 2009; 28: 919-926
        • Mathias HC
        • Ozalp F
        • Will MB
        • et al.
        A randomized, controlled trial of C0- vs C2-guided therapeutic drug monitoring of cyclosporine in stable heart transplant patients.
        J Heart Lung Transplant. 2005; 24: 2137-2143
        • Costanzo MR
        • Dipchand A
        • Starling R
        • et al.
        The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients.
        J Heart Lung Transplant. 2010; 29: 914-956
        • Jørgensen K
        • Povlsen J
        • Madsen S
        • et al.
        C2 (2-h) levels are not superior to trough levels as estimates of the area under the curve in tacrolimus-treated renal-transplant patients.
        Nephrol Dial Transplant. 2002; 17: 1487-1490
        • Aumente Rubio MD
        • Arizón del Prado JM
        • López Malo de Molina MD
        • et al.
        Clinical pharmacokinetics of tacrolimus in heart transplantation: new strategies of monitoring.
        Transplant Proc. 2003; 35: 1988-1991
        • Ragette R
        • Kamler M
        • Weinreich G
        • Teschler H
        • Jakob H
        Tacrolimus pharmacokinetics in lung transplantation: new strategies for monitoring.
        J Heart Lung Transplant. 2005; 24: 1315-1319
        • Saint-Marcoux F
        • Knoop C
        • Debord J
        • et al.
        Pharmacokinetic study of tacrolimus in cystic fibrosis and non-cystic fibrosis lung transplant patients and design of Bayesian estimators using limited sampling strategies.
        Clin Pharmacokinet. 2005; 44: 1317-1328
        • Knight SR
        • Morris PJ.
        Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review.
        Transplantation. 2008; 85: 1675-1685
        • Figurski MJ
        • Pawiński T
        • Goldberg LR
        • et al.
        Pharmacokinetic monitoring of mycophenolic acid in heart transplant patients: correlation the side-effects and rejections with pharmacokinetic parameters.
        Ann Transplant. 2012; 17: 68-78
        • Yamani MH
        • Starling RC
        • Goormastic M
        • et al.
        The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection.
        Transplantation. 2000; 69: 2326-2330
        • Mardigyan V
        • Giannetti N
        • Cecere R
        • Besner JG
        • Cantarovich M
        Best single time points to predict the area-under-the-curve in long-term heart transplant patients taking mycophenolate mofetil in combination with cyclosporine or tacrolimus.
        J Heart Lung Transplant. 2005; 24: 1614-1618
        • Eisen HJ
        • Kobashigawa J
        • Starling RC
        • et al.
        Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial.
        Am J Transplant. 2013; 13: 1203-1216
        • Kaczmarek I
        • Zaruba M
        • Beiras-Fernandez A
        • et al.
        Tacrolimus with mycophenolate mofetil or sirolimus compared with calcineurin inhibitor-free immunosuppression (sirolimus/mycophenolate mofetil) after heart transplantation: 5 year results.
        J Heart Lung Transplant. 2013; 32: 277-284
        • Andreassen AK
        • Andersson B
        • Gustafsson F
        • et al.
        Everolimus initiation with early calcineurin inhibitor withdrawal in de novo heart transplant recipients: three-year results from the randomized SCHEDULE study.
        Am J Transplant. 2016; 16: 1238-1247
        • Strueber M
        • Warnecke G
        • Fuge J
        • et al.
        Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial.
        Am J Transplant. 2016; 16: 3171-3180
        • Shitrit D
        • Rahamimov R
        • Gidon S
        • et al.
        Use of sirolimus and low-dose calcineurin inhibitor in lung transplant recipients with renal impairment: results of a controlled pilot study.
        Kidney Int. 2005; 67: 1471-1475
        • Monchaud C
        • Marquet P.
        Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part I.
        Clin Pharmacokinet. 2009; 48: 419-462
        • Aliabadi AZ
        • Grömmer M
        • Dunkler D
        • et al.
        Impact of rabbit antithymocyte globulin dose on long-term outcomes in heart transplant patients.
        Transplantation. 2016; 100: 685-693
        • Scheffert JL
        • Raza K.
        Immunosuppression in lung transplantation.
        J Thorac Dis. 2014; 6: 1039-1053
        • Zuckermann A
        • Schulz U
        • Deuse T
        • et al.
        Thymoglobulin induction in heart transplantation: patient selection and implications for maintenance immunosuppression.
        Transpl Int. 2015; 28: 259-269
        • Barten MJ
        • Schulz U
        • Beiras-Fernandez A
        • et al.
        A proposal for early dosing regimens in heart transplant patients receiving thymoglobulin and calcineurin inhibition.
        Transplant Direct. 2016; 2: e81
        • Krasinskas AM
        • Kreisel D
        • Acker MA
        • et al.
        CD3 monitoring of antithymocyte globulin therapy in thoracic organ transplantation.
        Transplantation. 2002; 73: 1339-1341
        • Goland S
        • Czer LS
        • Coleman B
        • et al.
        Induction therapy with thymoglobulin after heart transplantation: impact of therapy duration on lymphocyte depletion and recovery, rejection, and cytomegalovirus infection rates.
        J Heart Lung Transplant. 2008; 27: 1115-1121
        • Castleberry AW
        • Bishawi M
        • Worni M
        • et al.
        Medication nonadherence after lung transplantation in adult recipients.
        Ann Thorac Surg. 2017; 103: 274-280
        • Tran DD
        • Kobashigawa J.
        A review of the management of pregnancy after cardiac transplantation.
        Clin Transpl. 2015; 31: 151-161
        • Vos R
        • Ruttens D
        • Verleden SE
        • et al.
        Pregnancy after heart and lung transplantation.
        Best Pract Res Clin Obstet Gynaecol. 2014; 28: 1146-1162
        • Coscia LA
        • Constantinescu S
        • Davison JM
        • Moritz MJ
        • Armenti VT
        Immunosuppressive drugs and fetal outcome.
        Best Pract Res Clin Obstet Gynaecol. 2014; 28: 1174-1187
        • Fuchs KM
        • Coustan DR.
        Immunosuppressant therapy in pregnant organ transplant recipients.
        Semin Perinatol. 2007; 31: 363-371
        • Constantinescu S
        • Pai A
        • Coscia LA
        • Davison JM
        • Moritz MJ
        • Armenti VT
        Breast-feeding after transplantation.
        Best Pract Res Clin Obstet Gynaecol. 2014; 28: 1163-1173
      18. Prednisone [package insert].
        Roxane Laboratories, Inc, Columbus, OH2012
      19. Solu-Medrol [package insert].
        Pfizer, New York, NY2011
      20. Schaefer C Drugs during pregnancy and lactation treatment options and risk assessment. Academic Press, Elsevier, London2015
        • Flint J
        • Panchal S
        • Hurrell A
        • et al.
        BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding-part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids.
        Rheumatology (oxford). 2016; 55: 1693-1697
      21. Health Products Regulatory Authority>CellCept (mycophenolate mofetil)—Important Safety Information from Roche Products (Ireland) Ltd. Available at:https://www.hpra.ie/homepage/medicines/safety-notices/item?t=/cellcept-(mycophenolate-mofetil)—important-safety-information-from-roche-products-(ireland)-ltd&id=f9fe0326-9782-6eee-9b55-ff00008c97d0.

        • Mehra MR
        • Canter CE
        • Hannan MM
        • et al.
        The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update.
        J Heart Lung Transplant. 2016; 35: 1-23
        • Weill D
        • Benden C
        • Corris PA
        • et al.
        A consensus document for the selection of lung transplant candidates: 2014–an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation.
        J Heart Lung Transplant. 2015; 34: 1-15
        • Cooper LB
        • Lu D
        • Mentz RJ
        • et al.
        Cardiac transplantation for older patients: characteristics and outcomes in the septuagenarian population.
        J Heart Lung Transplant. 2016; 35: 362-369
        • Courtwright A
        • Cantu E.
        Lung transplantation in elderly patients.
        J Thorac Dis. 2017; 9: 3346-3351
        • Krenzien F
        • ElKhal A
        • Quante M
        • et al.
        A rationale for age-adapted immunosuppression in organ transplantation.
        Transplantation. 2015; 99: 2258-2268
        • Corsonello A
        • Pedone C
        • Incalzi RA
        Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions.
        Curr Med Chem. 2010; 17: 571-584
        • Daneshvar DA
        • Czer LS
        • Phan A
        • Trento A
        • Schwarz ER
        Heart transplantation in the elderly: why cardiac transplantation does not need to be limited to younger patients but can be safely performed in patients above 65 years of age.
        Ann Transplant. 2010; 15: 110-119