by era (Figure 1C). Multivariable regression identified PVR (OR 1.12, 95% CI 1.02-1.23, p=0.02), aortic insufficiency (OR 1.43, 95% CI 1.02-2.06, p=0.04) and concomitant procedures (OR 1.67, 95% CI 1.01-2.77, p=0.046) to predict worse survival. Larger left ventricular cavity size was protective (OR 0.73, 95% CI 0.57-0.92, p=0.01).

Conclusion: This is the largest experience of CF LVADs, along with long term survival data, at a single center. The patient profile is markedly higher risk than published multi-centre INTERMACS Registry. Early survival has improved in recent era and is similar to INTERMACS Registry. Late survival is encouraging. Aortic insufficiency and concomitant procedures increase mortality. Elevated PVR and small LV cavity size should be avoided.

45

Gender Differences in Mechanical Circulatory Support - Insights From a European Registry

A.M. Bernhardt, 1 B. Sill, 1 F.M. Wagner, 1 T.M. deBy, 2 J. Gummert, 3 P. Mohacsi, 4 H. Reichenspurk, 1 T. Deuse, 1 Department of Cardiovascular Surgery, Univ Heart Ctr Hamburg, Hamburg, Germany; 2EUROMACS, Berlin, Germany; 4Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany; 4Clinic of Cardiology, University Hospital Bern, Bern, Switzerland.

Purpose: Mechanical circulatory support (MCS) is an established treatment option for patients with end-stage heart failure. Although there are numerous reports identifying sex-specific differences with respect to progression and prognosis of heart failure, little is known about gender differences in MCS indications and outcomes for patients with ventricular assist devices (VAD).

Methods: INTERMACS participants enrolled between 5/2012 and 3/2014 were stratified by sDB status. Pre-implant demographics, clinical characteristics, and laboratory values and post-implant adverse event rates were compared. Patient outcomes were analyzed using Kaplan-Meier survival analysis, competing outcomes, and risk adjusted parametric hazard modeling.

Results: Of the 4672 patients analyzed, 435 (9.3%) had sDB (as diagnosed by the treating hospital). Patients with sDB were more likely to be older, white, INTERMACS Level 3 (stable but nototrope dependent), have additional comorbidities, and be destination therapy. Patients with sDB were less likely to be listed for transplant. The unadjusted three month survival was 90% for both patients with or without sDB. But after three months, patients with sDB had a worsening survival (see figure, p=0.04). After adjusting for known risk factors for MCS mortality, the early hazard ratio [HR]95%CI) for sDB patients compared to those without sDB was 0.8 (0.6, 1.1) and the late HR was 2.4 (1.4, 4.1). When simultaneously considering the outcomes death, transplant, and recovery, the one year estimated outcomes for sDB patients are 64.3% alive on a device, 23.8% death on a device, 11.2% transplant, and 0.7% ventricular recovery; while the one year estimates for patients without sDB are 63.6% alive on a device, 18.4% death on the device, 17.4% transplant, and 0.7% ventricular recovery (p=0.002).

Conclusion: MCS patients with and without sDB have similar early survival, but over time the sDB patients experience a comparatively worse survival. At one year, sDB patients are more likely to die on the device and less likely to receive a transplant. This may be due to sDB patients having other comorbidities. These findings should be taken into account when sDB are considered for destination therapy.

46

Characteristics and Outcomes in Patients Receiving Mechanical Circulatory Support With a History of Diabetes

R.S. Cantor, MSPH 1 S. V. Pamboukian, MD, MSPH 2 J. A. Tallaj, MD 2 D.C. Naefel, PhD 2 J.K. Kirklin, MD 1 Cardiothoracic Surgery, The University of Alabama at Birmingham, Birmingham, AL; 2Cardiovascular Diseases, The University of Alabama at Birmingham, Birmingham, AL.

Purpose: This study compares patients receiving durable mechanical circulatory support (MCS) with severe diabetes (sDB) to those without sDB.

Methods: INTERMACS participants enrolled between 5/2012 and 3/2014 were stratified by sDB status. Pre-implant demographics, clinical characteristics, and laboratory values and post-implant adverse event rates were compared. Patient outcomes were analyzed using Kaplan-Meier survival analysis, competing outcomes, and risk adjusted parametric hazard modeling.

Results: Of the 4672 patients analyzed, 435 (9.3%) had sDB (as diagnosed by the treating hospital). Patients with sDB were more likely to be older, white, INTERMACS Level 3 (stable but nototrope dependent), have additional comorbidities, and be destination therapy. Patients with sDB were less likely to be listed for transplant. The unadjusted three month survival was 90% for both patients with or without sDB. But after three months, patients with sDB had a worsening survival (see figure, p=0.04). After adjusting for known risk factors for MCS mortality, the early hazard ratio [HR]95%CI) for sDB patients compared to those without sDB was 0.8 (0.6, 1.1) and the late HR was 2.4 (1.4, 4.1). When simultaneously considering the outcomes death, transplant, and recovery, the one year estimated outcomes for sDB patients are 64.3% alive on a device, 23.8% death on a device, 11.2% transplant, and 0.7% ventricular recovery; while the one year estimates for patients without sDB are 63.6% alive on a device, 18.4% death on the device, 17.4% transplant, and 0.7% ventricular recovery (p=0.002).

Conclusion: MCS patients with and without sDB have similar early survival, but over time the sDB patients experience a comparatively worse survival. At one year, sDB patients are more likely to die on the device and less likely to receive a transplant. This may be due to sDB patients having other comorbidities. These findings should be taken into account when sDB are considered for destination therapy.

47

Inclusion of Cognitive and Mood Domains in the Assessment of Frailty Enhances Outcome Prediction in Patients Undergoing Ventricular Assist Device Implantation

M.K. Hannu 1 S. Jha 2 K. Wilhelm 1 E. Montgomery 3 P. Tunnilliff 2 S. Shaw 2 C. Hayward 2 M. Harke 2 E. Kottlyar 2 A. Jabboux 2 A.M. Kogos 1 E. Granger 1 K. Dhital 3 P. Croon 3 P. Newton 3 D. Robson 3 P. MacDonald 3 P. Spratt 2 1Occupational Therapy, St. Vincent’s Hospital, Sydney, Australia; 2Heart & Lung Transplant Unit, St. Vincent’s Hospital, Sydney, Australia; 3Psychiatry, St. Vincent’s Hospital, Sydney, Australia; 4Health Science, University of Technology, Sydney, Australia; 5St. Vincent’s Hospital, Sydney, Australia.